Polar Biology

, Volume 40, Issue 9, pp 1721–1737 | Cite as

Changes in phytoplankton bloom phenology over the North Water (NOW) polynya: a response to changing environmental conditions

  • Christian Marchese
  • Camille Albouy
  • Jean-Éric Tremblay
  • Dany Dumont
  • Fabrizio D’Ortenzio
  • Steve Vissault
  • Simon Bélanger
Article

Abstract

Marine ecological indicators can be used to assess the condition of the pelagic ecosystems. The bloom onset provides a warning bell for possible changes in trophic interactions and biogeochemical processes. However, depicting the phenology of phytoplankton blooms at high latitudes, where long-term observations are sparse or unavailable, is not a straightforward task. A data-interpolating empirical orthogonal function algorithm was applied to daily satellite-retrieved chlorophyll-a images to produce a long-term (1998–2014) and cloud-free data set over the North Water (NOW) polynya. The seasonal bloom was modeled using a multi-Gaussian approach from which a baseline of phenological characteristics was extracted. The correlation analysis highlights the influence of environmental factors, such as sea surface temperature, cloud fraction, wind stress, and sea-ice concentration, in modulating the bloom start date, its duration, and amplitude. The year-to-year variability in bloom onset appears to be controlled by a delicate balance between oceanographic and meteorological conditions. Blooms last longer during years characterized by a longer open-water period and are shorter during those characterized by greater sea-ice coverage. Noteworthy is the decrease in phytoplankton bloom amplitude over the 17 years examined. Collectively, these outcomes depict the NOW as a climate-sensitive region in which the pelagic marine ecosystem seems to be going toward a decline in chlorophyll-a concentrations. Satellite time series are still too short to differentiate between inter-annual variability, inter-decadal variability, and climate change signal. Should these changes persist; however, the NOW may no longer act as a productive regional oasis supporting thriving populations of zooplankton and top predators.

Keywords

Phenology Phytoplankton NOW polynya Gaussian model Remote sensing Physical forcing 

Notes

Acknowledgements

This study was supported by grants from ArcticNet, the Network of Centres of Excellence of Canada and the NSERC, and the Natural Sciences and Engineering Research Council of Canada (to S. B., J.-É. T. and D. D.). C. M. received a postgraduate scholarship from Université du Québec à Rimouski (UQAR) and funded by ArcticNet. C.A. is funded by a MELS FQRNT and RAQ postdoctoral fellowship. This is a contribution to the research programs of ArcticNet and Québec-Océan. We would like to thank M. Taylor for providing useful information about the use of the DINOEF method. We are very grateful to the reviewers for their helpful comments and remarks. We also thank E. Calabretta and L. Gray for language support.

Supplementary material

300_2017_2095_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2108 KB)

References

  1. Alvera-Azcárate A, Barth A, Rixen M, Beckers JM (2005) Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Model 9:325–346CrossRefGoogle Scholar
  2. Ardyna M, Babin M, Gosselin M, Devred E, Bélanger S, Matsuoka A, Tremblay J-É (2013) Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates. Biogeosciences 10:4383–4404CrossRefGoogle Scholar
  3. Ardyna M, Babin M, Gosselin M, Devred E, Rainville L, Tremblay J-É (2014) Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys Res Lett 41:6207–6212CrossRefGoogle Scholar
  4. Arrigo KR, van Dijken GL (2011) Secular trends in Arctic Ocean net primary production. J Geophys Res. doi:10.1029/2011JC007151 Google Scholar
  5. Arrigo KR, van Dijken GL (2015) Continued increases in Arctic Ocean primary production. Prog Oceanogr 136:60–70CrossRefGoogle Scholar
  6. Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett. doi:10.1029/2008GL035028 Google Scholar
  7. Arrigo KR et al (2012) Massive phytoplankton blooms under Arctic sea ice. Science 336:1408CrossRefPubMedGoogle Scholar
  8. Barber DG, Massom RA (2007) The role of sea ice in Arctic and Antarctic polynyas. In: Smith WO, Barber DG (eds) Polynyas: windows to the World. Elsevier, Amsterdam, pp 1–54Google Scholar
  9. Barber DG, Hanesiak JM, Chan W, Piwowar J (2001) Sea ice and meteorological conditions in Northern Baffin Bay and the North Water polynya between 1979 and 1996. Atmosphere-Ocean 39:343–359CrossRefGoogle Scholar
  10. Beckers JM, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic datasets. J Atmos Oceanic Technol 20:1839–1856CrossRefGoogle Scholar
  11. Bélanger S, Babin M, Tremblay J-É (2013a) Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding. Biogeosciences 10:4087–4101CrossRefGoogle Scholar
  12. Bélanger S, Cizmeli SA, Ehn J, Matsuoka A, Doxaran D, Hooker S, Babin M (2013b) Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting. Biogeosciences 10:6433–6452CrossRefGoogle Scholar
  13. Bentamy A, Grodsky SA, Carton JA, Croize-Fillon D, Chapron B (2012) Matching ASCAT and QuikSCAT winds. J Geophys Res. doi:10.1029/2011JC007479 Google Scholar
  14. Bergeron M, Tremblay J-É (2014) Shifts in biological productivity inferred from nutrient drawdown in the southern Beaufort Sea (2003–2011) and northern Baffin Bay (1997–2011), Canadian Arctic. Geophys Res Lett 41:3979–3987CrossRefGoogle Scholar
  15. Bourgain P, Gascard JC, Shi J, Zhao J (2013) Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion. Ocean. Science 9:447–460Google Scholar
  16. Brody SR, Lozier MS, Dunne JP (2013) A comparison of methods to determine phytoplankton bloom initiation. J Geophys Res 118:2345–2357CrossRefGoogle Scholar
  17. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35CrossRefGoogle Scholar
  18. Campbell JA, Yeats PA (1982) The distribution of manganese, iron, nickel, copper and cadmium in the waters of Baffin Bay and the Canadian Arctic Archipelago. Oceanol Acta 5:161–168Google Scholar
  19. Campbell LM, Norstrom RJ, Hobson KA, Muir DC, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263CrossRefPubMedGoogle Scholar
  20. Carranza MM, Gille ST (2015) Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer. J Geophys Res Ocean 120:304–323CrossRefGoogle Scholar
  21. Chernokulsky A, Mokhov II (2012) Climatology of total cloudiness in the Arctic: an intercomparison of observations reanalyses. Adv Meteorol 2012:1–15CrossRefGoogle Scholar
  22. Coello-Camba A, Agustí S, Vaqué D, Holding J, Arrieta JM, Wassmann P, Duarte CM (2014) Experimental Assessment of Temperature Thresholds for Arctic Phytoplankton Communities. Estuaries Coasts 38:873–885CrossRefGoogle Scholar
  23. Cole H, Henson S, Martin A, Yool A (2012) Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics. J Geophys Res. doi:10.1029/2012JC008249 Google Scholar
  24. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett. doi:10.1029/2007GL031972 Google Scholar
  25. Corredor-Acosta A, Morales CE, Hormazabal S, Andrade I, Correa-Ramirez MA (2015) Phytoplankton phenology in the coastal upwelling region off central-southern Chile (35°S–38°S): Time-space variability, coupling to environmental factors, and sources of uncertainty in the estimates. J Geophys Res Ocean 120:813–831CrossRefGoogle Scholar
  26. D’Ortenzio F, Antoine D, Martinez E, Ribera d’Alcalà M (2012) Phenological changes of oceanic phytoplankton in the 1980s and 2000s as revealed by remotely sensed ocean-color observations. Glob Biogeochem Cycles 26Google Scholar
  27. Deardorff DW (1983) A multi-limit mixed layer entrainment formulation. J Phys Oceanogr 13:988–1002CrossRefGoogle Scholar
  28. Dumont D, Gratton Y, Arbetter TE (2009) Modeling the dynamics of the North Water polynya ice bridge. J Phys Oceanogr 39:1448–1461CrossRefGoogle Scholar
  29. Elzhov TV, Mullen KM, Spiess AN, Bolker B (2016) minpack.lm: R interface to the Levenberg–Marquardt nonlinear least-squares algorithm Found in MINPACK, Plus Support for Bounds. R package version 1.2-1. http://CRAN.R-project.org/package=minpack.lm
  30. Ferreira AS, Visser AW, MacKenzie BR, Payne MR (2014) Accuracy and precision in the calculation of phenology metrics. J Geophys Res Ocean 119:8438–8453CrossRefGoogle Scholar
  31. Frajka-Williams E, Rhines PB (2010) Physical controls and interannual variability of the Labrador Sea spring phytoplankton bloom in distinct regions. Deep Sea Res Part I: Oceanogr Res Pap Hist Med Assoc 57:541–552CrossRefGoogle Scholar
  32. Friedland KD et al (2016) Seasonal phytoplankton blooms in the North Atlantic linked to the overwintering strategies of copepods. Elementa: Sci Anthr 4:99Google Scholar
  33. Fujiwara A, Hirawake T, Suzuki K, Imai I, Saitoh SI (2014) Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean. Biogeosciences 11:1705–1716CrossRefGoogle Scholar
  34. Gillett NP et al (2008) Attribution of polar warming to human influence. Nat Geosci 1:750–754CrossRefGoogle Scholar
  35. Gonzalez Taboada F, Anadon R (2014) Seasonality of North Atlantic phytoplankton from space: impact of environmental forcing on a changing phenology (1998–2012). Glob Change Biol 20:698–712CrossRefGoogle Scholar
  36. Hanafin JA, Minnett PJ (2001) Cloud forcing of surface radiation in the North Water polynya during NOW’98. Atmosphere-Ocean 39:239–255CrossRefGoogle Scholar
  37. Heide-Jorgensen MP, Burt LM, Hansen RG, Nielsen NH, Rasmussen M, Fossette S, Stern H (2013) The significance of the North Water polynya to arctic top predators. Ambio 42:596–610CrossRefPubMedGoogle Scholar
  38. Henson SA, Robinson I, Allen JT, Waniek JJ (2006) Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic. Deep Sea Res Part I: Oceanogr Res Pap Hist Med Assoc 53:1601–1615CrossRefGoogle Scholar
  39. Hunsicker ME, Kappel CV, Selkoe KA, Halpern BS, Scarborough C, Mease L, Amrhein A (2016) Characterizing driver–response relationships in marine pelagic ecosystems for improved ocean management. Ecol Appl 26:651–663CrossRefPubMedGoogle Scholar
  40. Huot Y, Babin M, Bruyant F, Grob C, Twardowski MS, Claustre H (2007) Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean. Biogeosciences 4:853–868CrossRefGoogle Scholar
  41. Ingram RG, Bacle J, Barber DG, Gratton Y, Melling H (2002) An overview of physical processes in the North Water. Deep Sea Res Part II: Top Stud Oceanogr 49:4893–4906CrossRefGoogle Scholar
  42. Ji R, Edwards M, Mackas DL, Runge JA, Thomas AC (2010) Marine plankton phenology and life history in a changing climate: current research and future directions. J Plankton Res 32:1355–1368CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ji R, Jin M, Varpe O (2013) Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol 19:734–741CrossRefGoogle Scholar
  44. Kahru M, Brotas V, Manzano-Sarabia M, Mitchell BG (2011) Are phytoplankton blooms occurring earlier in the Arctic? Glob Change Biol 17:1733–1739CrossRefGoogle Scholar
  45. Karnovsky NJ, Hunt GL Jr (2002) Estimation of carbon flux to dovekies (Alle alle) in the North Water. Deep Sea Res Part II: Top Stud Oceanogr 49:5117–5130CrossRefGoogle Scholar
  46. Klein B et al (2002) Phytoplankton biomass, production and potential export in the North Water. Deep Sea Res Part II: Top Stud Oceanogr 49:4983–5002CrossRefGoogle Scholar
  47. Kwok R, Toudal Pedersen L, Gudmandsen P, Pang SS (2010) Large sea ice outflow into the Nares Strait in 2007. Geophys Res Lett. doi:10.1029/2009GL041872 Google Scholar
  48. Lacour L, Claustre H, Prieur L, D’Ortenzio F (2015) Phytoplankton biomass cycles in the North Atlantic subpolar gyre: a similar mechanism for two different blooms in the Labrador Sea. Geophys Res Lett 42:5403–5410CrossRefGoogle Scholar
  49. Land PE, Shutler JD, Platt T, Racault MF (2014) A novel method to retrieve oceanic phytoplankton phenology from satellite data in the presence of data gaps. Ecol Indic 37:67–80CrossRefGoogle Scholar
  50. Lewandowska AM, Boyce DG, Hofmann M, Matthiessen B, Sommer U, Worm B (2014) Effects of sea surface warming on marine plankton. Ecol Lett 17:614–623CrossRefPubMedGoogle Scholar
  51. Li WK, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539CrossRefPubMedGoogle Scholar
  52. Li Y, Rubao J, Jenouvrier S, Jin M, Stroeve J (2016) Synchronicity between ice retreat and phytoplankton bloom in circum-Antarctic polynyas. Geophys Res Lett 43:2086–2093CrossRefGoogle Scholar
  53. Lindemann C, St. John MA (2014) A seasonal diary of phytoplankton in the North Atlantic. Frontiers in Marine. Science 1:37Google Scholar
  54. Marchese C (2015) Biodiversity hotspots: a shortcut for a more complicated concept. Glob Ecol Conserv 3:297–309CrossRefGoogle Scholar
  55. Maritorena S, Siegel DA, Peterson AR (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Optics 41:2705–2714CrossRefGoogle Scholar
  56. Maritorena S, d’Andon OHF, Mangin A, Siegel DA (2010) Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues. Remote Sens Environ 114:1791–1804CrossRefGoogle Scholar
  57. Maslanik J, Stroeve J, Fowler C, Emery W (2011) Distribution and trends in Arctic sea ice age through spring 2011. Geophys Res Lett. doi:10.1029/2011GL047735 Google Scholar
  58. Mauri E, Poulain P-M, Južnič-Zonta Ž (2007) MODIS chlorophyll variability in the northern Adriatic Sea and relationship with forcing parameters. J Geophys Res. doi:10.1029/2006JC003545 Google Scholar
  59. Mei ZP et al (2002) Physical control of spring-summer phytoplankton dynamics in the North Water, April–July 1998. Deep Sea Res Part II: Top Stud Oceanogr 49:4959–4982CrossRefGoogle Scholar
  60. Meier W, Fetterer F, Savoie M, Mallory S, Duerr R, Stroeve J (2013) NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 2. National Snow and Ice Data Center, BoulderGoogle Scholar
  61. Melling H, Gratton Y, Ingram G (2001) Ocean circulation within the North Water polynya of Baffin Bay. Atmosphere-Ocean 39:301–325CrossRefGoogle Scholar
  62. Michel C, Gosselin M, Nozais C (2002) Preferential sinking export of biogenic silica during the spring and summer in the North Water polynya (northern Baffin Bay): Temperature or biological control? J Geophys Res. doi:10.1029/2000JC000408 Google Scholar
  63. Odate T, Hirawake T, Kudoh S, Klein B, LeBlanc B, Fukuchi M (2002) Temporal and spatial patterns in the surface-water biomass of phytoplankton in the North Water. Deep Sea Res Part II: Top Stud Oceanogr 49:4947–4958CrossRefGoogle Scholar
  64. Pabi S, van Dijken GL, Arrigo KR (2008) Primary production in the Arctic Ocean, 1998–2006. J Geophys Res. doi:10.1029/2007JC004578 Google Scholar
  65. Park KA, Kang CK, Kim KR, Park JE (2014) Role of sea ice on satellite-observed chlorophyll-a concentration variations during spring bloom in the East/Japan sea. Deep Sea Res Part I: Oceanogr Res Pap Hist Med Assoc 83:34–44CrossRefGoogle Scholar
  66. Parkinson CL, Comiso JC (2013) On the 2012 record low Arctic sea ice cover: combined impact of preconditioning and an August storm. Geophys Res Lett 40:1356–1361CrossRefGoogle Scholar
  67. Petrenko D, Pozdnyakov D, Johannessen J, Counillon F, Sychov V (2013) Satellite-derived multi-year trend in primary production in the Arctic Ocean. Int J Remote Sens 34:3903–3937CrossRefGoogle Scholar
  68. Platt T, Sathyendranath S (2008) Ecological indicators for the pelagic zone of the ocean from remote sensing. Remote Sens Environ 112:3426–3436CrossRefGoogle Scholar
  69. Platt T, White GN, Zhai L, Sathyendranath S, Roy S (2009) The phenology of phytoplankton blooms: ecosystem indicators from remote sensing. Ecol Model 220:3057–3069CrossRefGoogle Scholar
  70. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  71. Racault M-F, Le Quéré C, Buitenhuis E, Sathyendranath S, Platt T (2012) Phytoplankton phenology in the global ocean. Ecol Indic 14:152–163CrossRefGoogle Scholar
  72. Racault M-F, Sathyendranath S, Platt T (2014) Impact of missing data on the estimation of ecological indicators from satellite ocean-colour time-series. Remote Sens Environ 152:15–28CrossRefGoogle Scholar
  73. Rainville L, Lee C, Woodgate R (2011) Impact of wind-driven mixing in the Arctic Ocean. Oceanography 24:136–145CrossRefGoogle Scholar
  74. Rasmussen TAS, Kliem N, Kaas E (2011) The Effect of climate change on the sea ice and hydrography in Nares Strait. Atmosphere-Ocean 49:245–258CrossRefGoogle Scholar
  75. Renner AHH et al (2014) Evidence of Arctic sea ice thinning from direct observations. Geophys Res Lett 41:5029–5036CrossRefGoogle Scholar
  76. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  77. Rumyantseva A, Lucas N, Rippeth T, Martin A, Painter SC, Boyd TJ, Henson S (2015) Ocean nutrient pathways associated with the passage of a storm. Glob Biogeochem Cycles 29:1179–1189CrossRefGoogle Scholar
  78. Sapiano MRP, Brown CW, Schollaert Uz S, Vargas M (2012) Establishing a global climatology of marine phytoplankton phenological characteristics. J Geophys Res. doi:10.1029/2012JC007958 Google Scholar
  79. Sasaoka K, Chiba S, Saino T (2011) Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data. Geophys Res Lett. doi:10.1029/2011GL048299 Google Scholar
  80. Serreze MC et al (2003) A record minimum arctic sea ice extent and area in 2002. Geophys Res Lett. doi:10.1029/2002GL016406 Google Scholar
  81. Sirjacobs D et al (2011) Cloud filling of ocean colour and sea surface temperature remote sensing products over the Southern North Sea by the data interpolating empirical orthogonal functions methodology. J Sea Res 65:114–130CrossRefGoogle Scholar
  82. Smith WO, Barber DG (2007) Polynyas and climate change: a view to the future. In: Smith WO, Barber DG (eds) Polynyas: windows to the World. Elsevier, Amsterdam, pp 411–419CrossRefGoogle Scholar
  83. Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Change Biol 16:3154–3163Google Scholar
  84. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2011) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027CrossRefGoogle Scholar
  85. Stroeve JC, Markus T, Boisvert L, Miller J, Barrett A (2014) Changes in Arctic melt season and implications for sea ice loss. Geophys Res Lett 41:1216–1225CrossRefGoogle Scholar
  86. Taylor M (2016) sinkr: collection of functions with emphasis in multivariate data analysis. R package version 0.4. https://github.com/marchtaylor/sinkr. Accessed 30 Nov 2016
  87. Taylor M, Losch M, Wenzel M, Schröter J (2013) On the sensitivity of field reconstruction and prediction using Empirical Orthogonal Functions derived from gappy data. J Clim 22:9194–9205CrossRefGoogle Scholar
  88. Torres ME, Zima D, Falkner KK, Macdonald RW, O’Brien MC, Schöne BR, Siferd T (2011) Hydrographic changes in Nares Strait (Canadian Arctic Archipelago) in recent decades based on δ18O profiles in bivalve shells. Arctic 64:45–58CrossRefGoogle Scholar
  89. Tovar-Sanchez A, Duarte CM, Alonso JC, Lacorte S, Tauler R, Galban-Malagon C (2010) Impacts of metals and nutrients released from melting multiyear Arctic sea ice. J Geophys Res. doi:10.1029/2009JC005685 Google Scholar
  90. Tremblay J-É, Smith WO (2007) Primary production and nutrient dynamics in polynyas. In: Smith WO, Barber DG (eds) Polynyas: windows to the World. Elsevier, Amsterdam, pp 239–269CrossRefGoogle Scholar
  91. Tremblay J-É, Gratton Y, Carmack EC, Payne CD, Price NM (2002a) Impact of the large-scale Arctic circulation and the North Water polynya on nutrient inventories in Baffin Bay. J Geophys Res. doi:10.1029/2000JC000595 Google Scholar
  92. Tremblay J-É, Gratton Y, Fauchot J, Price NM (2002b) Climatic and oceanic forcing of new, net, and diatom production in the North Water. Deep Sea Res Part II: Top Stud Oceanogr 49:4927–4946CrossRefGoogle Scholar
  93. Tremblay J-É, Michel C, Hobson KA, Gosselin M, Price NM (2006a) Bloom dynamics in early opening waters of the Arctic Ocean. Limnol Oceanogr 51:900–912CrossRefGoogle Scholar
  94. Tremblay J-É, Hattori H, Michel C, Ringuette M, Mei Z-P, Lovejoy C, Fortier L, Hobson KA, Amiel D, Cochran JK (2006b) Trophic structure and pathways of biogenic carbon flow in the eastern North Water polynya. Prog Oceanogr 71:402–425CrossRefGoogle Scholar
  95. Tremblay J-É et al (2011) Climate forcing multiplies biological productivity in the coastal Arctic Ocean. Geophys Res Lett. doi:10.1029/2011GL048825 Google Scholar
  96. Vancoppenolle M et al (2013) Role of sea ice in global biogeochemical cycles: emerging views and challenges. Quat Sci Rev 79:207–230CrossRefGoogle Scholar
  97. Vidussi F et al (2004) Spatial and temporal variability of the phytoplankton community structure in the North Water polynya, investigated using pigment biomarkers. Can J Fish Aquat Sci 61:2038–2052CrossRefGoogle Scholar
  98. Vincent RF (2013) The 2009 North Water anomaly. Remote Sens Lett 4:1057–1066CrossRefGoogle Scholar
  99. Wang Y, Liu D (2013) Reconstruction of satellite chlorophyll-a data using a modified DINEOF method: a case study in the Bohai and Yellow seas, China. Int J Remote Sens 35:204–217CrossRefGoogle Scholar
  100. Wassmann P, Duarte CM, Agustí S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17:1235–1249CrossRefGoogle Scholar
  101. Yamamoto Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K, Kurita N (2009) Surface freshening of the Canada Basin, 2003–2007: River runoff versus sea ice meltwater. J Geophys Res. doi:10.1029/2008JC005000 Google Scholar
  102. Zhai L et al (2012) Phytoplankton phenology and production around Iceland and Faroes. Cont Shelf Res 37:15–25CrossRefGoogle Scholar
  103. Zhang HM, Bates JJ, Reynolds RW (2006) Assessment of composite global sampling: Sea surface wind speed. Geophys Res Lett. doi:10.1029/2006GL027086 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Christian Marchese
    • 1
  • Camille Albouy
    • 1
    • 2
    • 3
  • Jean-Éric Tremblay
    • 4
  • Dany Dumont
    • 5
  • Fabrizio D’Ortenzio
    • 6
  • Steve Vissault
    • 1
  • Simon Bélanger
    • 1
  1. 1.Département de biologie, Chimie et géographieUniversité du Québec à RimouskiQuébecCanada
  2. 2.Landscape Ecology, Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
  3. 3.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  4. 4.Québec-Océan et Takuvik, Département de biologieUniversité Laval, Pavillon Alexandre-VachonQuébecCanada
  5. 5.Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiQuébecCanada
  6. 6.Laboratoire d’Oceanographie de Villefranche (LOV)Université Pierre et Marie Curie and CNRS, UMR 7093Villefranche-sur-MerFrance

Personalised recommendations