Polar Biology

, Volume 40, Issue 8, pp 1607–1616 | Cite as

Phenotypic and phylogenetic studies of benthic mat-forming cyanobacteria on the NW Svalbard

  • K. A. Palinska
  • T. Schneider
  • W. Surosz
Original Paper


Cold habitats are diminishing as a result of climate change, while at the same time little is known of the diversity or biogeography of microbes that thrive in such environments. Furthermore, despite the evident importance of cyanobacteria in polar areas, there are hardly any studies focusing on the phylogenetic relationship between the Arctic and Antarctic cyanobacteria. Here, we described cyanobacterial mats as well as epi- and endoliths collected from shallow streams and rocks, respectively, in the northwestern part of Svalbard. Thirteen populations were identified and characterized by employing morphological and molecular (16S rRNA gene sequences) techniques. Our results were compared to analogous information (available from the GenBank) and related to organisms from similar environments located in the Northern and Southern Hemispheres. In general, the morphological and molecular characterizations complemented each other, and the identified Arctic populations belonged to the following orders: Oscillatoriales (6), Nostocales (6), and Chroococcales (1). Twelve of the identified polar populations showed high similarity (94–99% 16S rRNA gene sequence) when compared to other Arctic and Antarctic cyanobacteria. Mat builder Phormidium autumnale shared only 88% similarity with sequences deposited in the GenBank. Our results demonstrate remarkable similarities of microbial life of Svalbard to that in Antarctica and the High Himalayas. Our findings are a starting point for future comparative research of the benthic as well as endolithic populations of cyanobacteria from the Arctic and Antarctica that will yield new insights into the cold and dry limits of life on Earth. They imply global distributions of the low-temperature cyanobacterial populations throughout the cold terrestrial biosphere.


Spits bergen Arctic Antarctic Biogeography Polyphasic approach 



Research was supported by the DFG project PA 842/9-1. The authors thank Dr. Stefano Ventura and CNR-Polarnet for the use of the Italian polar station “Dirigibile Italia” in Ny-Ålesund; Dr. Ewa Jarosz for the proof-reading of the manuscript and English improvement, and Jozef Wiktor jr for the preparation of the Svalbard map.


  1. Abed RMM, Palinska KA, Camoin G, Golubic S (2006) Common evolutionary origin of planktonic and benthic nitrogen fixing oscillatoriacean cyanobacteria from tropical oceans. FEMS Microbiol Lett 260:171–177CrossRefPubMedGoogle Scholar
  2. Anagnostidis K, Komarek J (1988) Modern approach to the classification system of cyanophytes: 3—Oscillatoriales. Arch Hydrobiol Suppl 50:327–472Google Scholar
  3. Berrendero E, Perona E, Mateo P (2008) Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 58:447–460CrossRefPubMedGoogle Scholar
  4. Bhaya D, Grossman A, Steunou A-S, Khuri N, Cohan FM, Hamamura N, Melendrez MC, Bateson MM, Ward DM, Heidelberg JF (2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J 1:703–713CrossRefPubMedGoogle Scholar
  5. Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130CrossRefGoogle Scholar
  6. Borin S, Ventura S, Tambone F, Mapelli F, Schubotz F, Brusetti L, Scaglia B, D’Acqui LP, Solheim B, Turicchia S, Marasco R, Hinrichsw KU, Baldi F, Adani F, Daffonchio D (2010) Rock weathering creates oases of life in a high Arctic desert. Environ Microbiol 12:293–303CrossRefPubMedGoogle Scholar
  7. Broady PA, Kibblewhite AL (1991) Morphological characterization of Oscillatoriales (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarct Sci 3:35–45CrossRefGoogle Scholar
  8. Chacon E, Berrendero E, Garcia-Pichel F (2006) Biogeological signatures of microboring cyanobacterial communities in marine carbonates from Cabo Rojo, Puerto Rico. Sediment Geol 185:215–228CrossRefGoogle Scholar
  9. Cohan FM, Perry E (2007) A systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17:373–386CrossRefGoogle Scholar
  10. Comte K, Sabacka M, Carre-Mlouka A, Elster J, Komarek J (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376CrossRefPubMedGoogle Scholar
  11. Dillon JG, Castenholz RW (2003) The synthesis of the UV-screening pigment, scytonemin and photosynthetic performance in isolates from closely related natural populations of cyanobacteria (Calothrix sp.). Environ Microbiol 5:484–491CrossRefPubMedGoogle Scholar
  12. Dojani S, Kauff F, Weber B, Buedel B (2014) Genotypic and phenotypic diversity of cyanobacteria in biological soil crusts of the Succulent Karoo and Nama Karoo of Southern Africa. Microb Ecol 67:286–301CrossRefPubMedGoogle Scholar
  13. Geitler L (1932) Cyanophyceae. In: Kolkwitz R. (ed) Rabenhorst‘s Kryptogamen Flora von Deutschland, Osterreich und der Schweiz, vol 14. Akademische Verlagsgesellschaft, Leipzig, pp 1–1196Google Scholar
  14. Heath MW, Wood SA, Ryan KG (2010) Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol Ecol 73:95–109PubMedGoogle Scholar
  15. Holzinger A, Karsten U, Lutz L, Wiencke C (2006) Ultrastructure and photosynthesis in the supralittoral green macroalga Prasiola crispa from Spitsbergen (Norway) under UV exposure. Phycologia 45:168–177CrossRefGoogle Scholar
  16. Holzinger A, Roleda MY, Lutz C (2009) The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron 40:831–838CrossRefPubMedGoogle Scholar
  17. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Ketil E et al (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  18. Howard-Wiliams C, Pridmore R, Downes M, Vincent WF (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Anatarct Sci 1:125–131Google Scholar
  19. Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. In Beiträge zur Kryptogamenflora der Schweiz 9:1–560Google Scholar
  20. Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529CrossRefPubMedGoogle Scholar
  21. Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202CrossRefPubMedGoogle Scholar
  22. Kaasalainen U, Olsson S, Rikkinen J (2015) Evolution of the tRNALeu (UAA) Intron and congruence of genetic markers in lichen-symbiotic Nostoc. PLoS One 10:e0131223CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kastovska K, Elster J, Stibal M, Santruckova H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic). Microb Ecol 50:396–407CrossRefPubMedGoogle Scholar
  24. Kastovska K, Stibal M, Sabacka M, Cerna B, Santruckova H, Elster J (2007) Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol 30:277–287CrossRefGoogle Scholar
  25. Kim GH, Klochkova TA, Kang S-H (2008) Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (High Arctic sea area). J Environ Biol 29:485–491PubMedGoogle Scholar
  26. Kleinteich J, Wood SA, Kupper FC, Camacho A, Quesada A, Frickey T, Dietrich DR (2012) Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat Clim Chang 2:356–360CrossRefGoogle Scholar
  27. Komarek J (1999) Diversity of cyanoprokaryota (cyanobacteria) of King George Island, maritime Antarctica—a survey. Arch Hydrobiol 94:181–193Google Scholar
  28. Komarek J (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21:349–375CrossRefGoogle Scholar
  29. Komarek J (2010) Recent changes in cyanobacterial taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 63:245–259CrossRefGoogle Scholar
  30. Komarek J, Anagnostidis K (1999) Cyanoprokaryota 1. Teil Chroococcales. In: Ettl H, Gartner G, Heynig H, Mollenhauer D (eds) Sußwasserflora von Mitteleuropa. Gustav Fischer, Jena-Stuttgart -Lubeck-UlmGoogle Scholar
  31. Komarek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil Oscillatoriales. In: Budel B, Gartner G, Krienitz L, Schagerl M (eds), Sußwasserflora von Mitteleuropa. Elselvier/Spectrum, HeidelbergGoogle Scholar
  32. Kubeckova K, Elster J, Kanda H (2001) Periphyton ecology of glacial and snowfed streams, Ny-Ålesund, Svalbard: the influence of discharge disturbances due to sloughing, scraping and peeling. Nova Hedwigia Beiheft 123:139–170Google Scholar
  33. Lawes JC, Neilan BA, Brown MV, Clark GF, Johnston EL (2016) Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms. Biofouling 32:57–69CrossRefPubMedGoogle Scholar
  34. Lenzenweger R, Lutz C (2006) A contribution to knowledge of the desmid flora (Desmidiaceae, Zygnemaphyceae) of Spitsbergen. Algol Stud 119:79–89CrossRefGoogle Scholar
  35. Lopes VR, Ramos V, Martins A, Sousa M, Welker M, Antunes A, Vasconcelos VM (2012) Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Mar Environ Res 73:7–16CrossRefPubMedGoogle Scholar
  36. Loza V, Berrendero E, Perona E, Mateo P (2013) Polyphasic characterization of benthic cyanobacterial diversity from biofilms of the Guadarrama river (Spain): morphological, molecular and ecological approaches. J Phycol 49:282–297CrossRefPubMedGoogle Scholar
  37. Martineau E, Wood SA, Miller MR, Jungblut AD, Hawes I, Webster-Brown J, Packer MA (2013) Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia 711:139–154CrossRefGoogle Scholar
  38. Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broad pigmentation strategies in a high Arctic ice shelf ecosystem. FEMS Microb Ecol 53:73–87CrossRefGoogle Scholar
  39. Mueller DR, Vincent WF, Jeffries MO (2006) Environmental gradients, fragmented habitats, and microbiota of a northern ice shelf cryoecosystem, Ellesmere Island, Canada. Arct Antarct Alp Res 38:593–607CrossRefGoogle Scholar
  40. Nadeau T-L, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic oscillatorians (cyanobacteria). J Phycol 37:650–654CrossRefGoogle Scholar
  41. Nuebel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microb 63:3327–3332Google Scholar
  42. Palinska KA, Surosz W (2014) Taxonomy of cyanobacteria: a contribution to consensus approach. Hydrobiologia 740:1–11CrossRefGoogle Scholar
  43. Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659CrossRefPubMedGoogle Scholar
  44. Pocock T, Lachance M-A, Pröschold T, Priscu JC, Kim, Huner NPA (2004) Identification of a psychrophilic green alga from lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148CrossRefGoogle Scholar
  45. Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull A (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 130–145CrossRefGoogle Scholar
  46. Pushkareva E, Pessi IS, Wilmotte A, Elster J (2015) Cyanobacterial community composition in Arctic soil crusts at different stages of development. FEMS. Microb Ecol 91:1–10Google Scholar
  47. Rippka R, Deruelles J, Waterbury JB, Herdman, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  48. Sawstrom C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard, 79oN). Polar Biol 25:591–596Google Scholar
  49. Schmidt SK, Lynch RC, King AJ, Karki D, Robeson MS, Nagy L, Williams MW, Mitter MS Freeman KR (2011) Phylogeography of microbial phototrophs in the dry valleys oft he high Himalayas and Antarctica. Proc R Soc B Biol Sci 278:702–708CrossRefGoogle Scholar
  50. Shams S, Capelli C, Cerasino L, Ballot A, Dietrich DR, Sivonen K, Salmaso N (2014) Anatoxin-a producing Tychonema (cyanobacteria) in European waterbodies. Water Res 69C:68–79Google Scholar
  51. Sihvonen LM, Lyra C, Fewer DP, Rajaniemi-Wacklin P, Lehtimaki JM, Wahlsten M, Sivonen K (2007) Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS. Microb Ecol 61:74–84CrossRefGoogle Scholar
  52. Smith MC, Bowman JP, Scott FJ, Line MA (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184Google Scholar
  53. Stal L (2000) Microbial mats and Stromatolites. In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 61–120Google Scholar
  54. Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Ann Rev Microbiol 53:189–215CrossRefGoogle Scholar
  55. Stibal M, Sabacka M, Kastovska K (2006) Microbial communities on glacier surfaces in Svalbard: Impact on physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654CrossRefPubMedGoogle Scholar
  56. Strunecky O, Elster J, Komarek J (2010) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is the realink between north and south polar regions? Polar Biol 33:1419–1428CrossRefGoogle Scholar
  57. Strunecky O, Elster J, Komarek J (2012a) Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. FEMS Microb Ecol 82:482–490CrossRefGoogle Scholar
  58. Strunecky O, Komarek J, Elster J (2012b) Biogeography of Phormidium autumnale (Oscillatoriales, Cyanobacteria) in western and central Spitsbergen. Pol Polar Res 33:369–382Google Scholar
  59. Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J Phycol 33:171–181CrossRefGoogle Scholar
  60. Taton A, Grubisic S, Brambilla E, De Witt R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (Mc Murdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169CrossRefPubMedPubMedCentralGoogle Scholar
  61. Taton A, Grubisic S, Balthazart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006a) Biogeographical distribution and ecological range of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289CrossRefPubMedGoogle Scholar
  62. Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A (2006b) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270CrossRefGoogle Scholar
  63. Thomazeau S, Houdan-Fourmont A, Coute A, Duval C, Couloux A, Rousseau F, Bernard C (2010) The contribution of sub-Saharan African strains to the phylogeny of cyanobacteria: focusing on the Nostocaceae family (Nostocales, Cyanobacteria). J Phycol 46:564–579CrossRefGoogle Scholar
  64. Vincent WF (2000) Cyanobacterial dominance in the Polar Regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publisher, Dordrecht, pp 321–340Google Scholar
  65. Vopel K, Hawes I (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol Oceanogr 51:1801–1812CrossRefGoogle Scholar
  66. Wade BD, Garcia-Pichel F (2003) Evaluation of DNA extraction methods for molecular analyses of microbial communities in modern microbialites. Geomicrobiol J 40:1–134Google Scholar
  67. Walker JJ, Pace NR (2007) Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems. Appl Environ Microb 73:3497–3504CrossRefGoogle Scholar
  68. Ward DM, Cohan FM, Bhaya D, Heidelberg JF, Kuhl M, Grossman A (2008) Genomics, environmental genomics and the issue of microbial species. Heredity 100:207–219CrossRefPubMedGoogle Scholar
  69. Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Scince 301:976–978CrossRefGoogle Scholar
  70. Zakhia F, Jungblut AD, Taton A, Vincent WF, Wilmotte A (2009) Cyanobacteria in cold environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer Verlag, Berlin, pp 121–135Google Scholar
  71. Zhang L, Jungblut AD, Hawes I, Andersen DT, Sumner DY, Mackey TJ (2015) Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica. Polar Biol 38:1097–1110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Marine Biology and EcologyInstitute of Oceanography, University of GdanskGdyniaPoland
  2. 2.Plant Biodiversity and Evolution Group, Department of Biology and Environmental SciencesCarl von Ossietzky University of OldenburgOldenburgGermany

Personalised recommendations