Polar Biology

, Volume 40, Issue 8, pp 1537–1544 | Cite as

Factors affecting plasma chemistry values of the black-browed albatross Thalassarche melanophrys

  • Miguel Ferrer
  • Virginia Morandini
  • Lynelle Perry
  • Marc Bechard
Original Paper

Abstract

Blood chemical reference values and variations in them in long-lived endangered birds are of metabolic, veterinary, ecological and/or taxonomic interest. In the present study, we for the first time provide such reference values and test the influence of sex, age, and nest location on up to 11 plasma values in nesting black-browed albatrosses (Thalassarche melanophrys) that we sampled in 2015 on the Falkland Islands. Our results showed that differences between sexes were not significant for any of the parameters for which we tested. We found insignificant differences in metabolically related parameters in nestlings being raised in the middle of nesting colonies and those being raised at the edges of the colonies indicating that nest location did not affect the nutritional status or health of young, developing albatrosses. Conversely, age had a significant effect on a number of metabolites, inorganic ions and enzymatic activity. In particular, age-related differences in glucose, triglyceride, urea, and uric acid suggested that the relative metabolic rate was higher in nestling than in adult albatrosses.

Keywords

Age Seabirds Blood chemistry Nest location Metabolites Nutritional state 

References

  1. Aguilera E, Moreno J, Ferrer M (1993) Blood chemistry values in three Pygoscelis penguins. Comp Biochem Phys A 105:471–473CrossRefGoogle Scholar
  2. Alonso JC, Huecas V, Alonso JA, Abelenda M, Muñoz-Pulido R, Puerta ML (1991) Hematology and blood chemistry of adult white storks (Ciconia ciconia). Comp Biochem Phys A 98:395–397CrossRefGoogle Scholar
  3. Alonso-Alvarez C, Ferrer M (2001) A biochemical study of fasting, sub-feeding, and recovery processes in yellow-legged gulls. Physiol Biochem Zool 74:703–713CrossRefPubMedGoogle Scholar
  4. Alonso-Alvarez C, Ferrer M, Viñuela J, Amat JA (2003) Plasma chemistry of the chinstrap penguin Pygoscelis antarctica during fasting periods: a case of poor adaptation to food deprivation? Polar Biol 26:14–19Google Scholar
  5. Angelier F, Tonra CM, Holberton RL, Marra PP (2011) Short-term changes in body condition in relation to habitat and rainfall abundance in American redstarts Setophaga ruticilla during the non-breeding season. J Avian Biol 42:335–341CrossRefGoogle Scholar
  6. Bacon WL, Nestor KE, Naber EC (1989) Prediction of carcass composition of turkeys by blood lipids. Poult Sci 68:1282–1288CrossRefPubMedGoogle Scholar
  7. Balasch J, Musquera S, Palacios L, Jimenez M, Palomeque J (1976) Comparative hematology of some falconiforms. Condor 78:258–259CrossRefGoogle Scholar
  8. Balbontin J, Ferrer M (2005) Factors affecting the length of the post-fledging period in the Bonelli’s Eagle Hieraaetus fasciatus. Ardea 93:189–198Google Scholar
  9. Bell DJ (1971) Plasma enzymes. In: Bell DJ, Freeman BM (eds) Physiology and Biochemistry of the Domestic Fowl, vol 2. Academic, London, pp 936–971Google Scholar
  10. Brooke M (2004) Albatrosses and petrels across the world. Oxford University Press, OxfordGoogle Scholar
  11. Casado E, Balbontin J, Ferrer M (2002) Plasmachemistry in Booted Eagles (Hieraaetus pennatus) during breeding season. Comp Biochem Phys A 131:233–241CrossRefGoogle Scholar
  12. Cherel Y, Robin JP, Le Maho Y (1988) Physiology and biochemistry of long-term fasting in birds. Can J Zool 66:159–166CrossRefGoogle Scholar
  13. Cooper J, Needham JR, Fox NC (1986) Bacteriological, haematological and clinical chemical studies on the Mauritius kestrel (Falco punctatus). Avian Path. 15:349–356CrossRefGoogle Scholar
  14. Costa ND, McDonald DE, Swan RA (1993) Age-related changes in plasma biochemical values of farmed emus (Dromaius novaehollandiae). Aust Vet J 70:341–344CrossRefPubMedGoogle Scholar
  15. Crossin GT, Phillips RA, Trathan PN, Fox DS, Dawson A, Wynne-Edwards KE Williams TD (2012) Migratory carryover effects and endocrinological correlates of reproductive decisions and reproductive success in female albatrosses. Gen Comp Endocrinol 176:151–157CrossRefPubMedGoogle Scholar
  16. Dabbert CB, Martin TE, Powell KC (1997) Use of body measurements and serum metabolites to estimate the nutritional status of mallards wintering in the Mississipi Alluvial Valley, USA. J Wildl Dis 33:57–63CrossRefPubMedGoogle Scholar
  17. Didier R, Remesy C, Demigne C (1983) Changes in glucose and lipid metabolism in starved or starved-refed Japanese quail (Coturnix coturnix japonica) in relation to fine structure of liver cells. Comp Biochem Physiol A 74:839–848CrossRefPubMedGoogle Scholar
  18. Dobado-Berrios PM, Ferrer M (1997) Age-related changes of plasma alkaline phosphatase and inorganic phosphorus, and late ossification of the cranial roof in the Spanish imperial Eagle (Aquila adalberti C.L. Brehm, 1861). Physiol Zool 70:421–427CrossRefPubMedGoogle Scholar
  19. Fairbrother A, Craig MA, Walker K, O’Loughlin D (1990) Changes in Mallard (Anas platyrhynchos) serum chemistry due to age, sex, and reproductive condition. J Wildl Dis 26:67–77CrossRefPubMedGoogle Scholar
  20. Ferrer M (1990) Hematological studies in birds. Condor 92:1085–1086CrossRefGoogle Scholar
  21. Ferrer M (1993) Blood chemistry studies in birds: Some applications to ecological problems. Trends in Comp Biochem Physiol 1:1031–1044Google Scholar
  22. Ferrer M (1994) Nutritional condition of Spanish imperial eagle nestlings Aquila adalberti. Bird Study 41: 120–123CrossRefGoogle Scholar
  23. Ferrer M, García-Rodríguez T, Carrillo JM, Castroviejo J (1987) Hematocrit and blood chemistry values in captive raptors (Gyps fulvus, Buteo buteo, Milvus migrans, Aquila heliaca). Comp Biochem Phys A 87:1123–1127CrossRefGoogle Scholar
  24. Ferrer M, Belliure J, Viñuela J, Martin B (2013) Parental physiological condition and reproductive success in chinstrap penguins (Pygoscelis antarctica). Polar Biol 36:529–535CrossRefGoogle Scholar
  25. Ferrer M, Belliure J, Minguez E, Casado E, Bildstein K (2014) Heat loss and site-dependent fecundity in chinstrap penguins (Pygoscelis antarctica). Polar Biol 37:1031–1039CrossRefGoogle Scholar
  26. Ferrer M, Morandini V, Perry L, Bechard M (2016) Sex determination by morphological measurements of Black-browed albatrosses (Thalassarche melanophrys) using discriminant analysis. Waterbirds 39:295–299CrossRefGoogle Scholar
  27. García-Rodríguez T, Ferrer M, Carrillo JC, Castroviejo J (1987a) Metabolic responses of Buteo buteo to long-term fasting and refeeding. Comp Biochem Phys A 87:381–386Google Scholar
  28. García-Rodríguez T, Ferrer M, Recio F, Castroviejo J (1987b) Circadian rhythms of determined blood chemistry values in Buzzards and Eagle Owls. Comp Biochem Phys A 88:663–669Google Scholar
  29. Gordon MS (1972) Animal physiology: principles and adaptations. Macmillan Company, Los AngelesGoogle Scholar
  30. Griminger P (1986) Lipid metabolism. In: Sturkie PD (ed) Avian physiology. Springer, Berlin Heidelberg, New York, pp 345–358CrossRefGoogle Scholar
  31. Halliwell WH (1981) Serum chemistry profiles in the health and disease of birds of prey. In: Cooper JE, Greenwood AG (eds) Recent advances in the study of raptor diseases. Chiron Publications, West Yorkshire, pp. 111–112Google Scholar
  32. Hoffman DJ, Franson JC, Pattee OH, Bunck CM, Murray HC (1985) Biochemical and hematological effects of lead ingestion in nestling American kestrels (Falco sparverius). Comp Biochem Phys C 80:431–439CrossRefGoogle Scholar
  33. Huin N (2007) Aspects of the breeding biology and foraging ecology of the black-browed albatross Diomedea melanophris in the Falkland Islands. British Antarctic Survey, StanleyGoogle Scholar
  34. Huin N, Reid T (2007) Census of the black-browed albatross population of the Falkland Islands. Falkland Conservation, StanleyGoogle Scholar
  35. Jenni-Eiermann S, Jenni L (1994) Plasma metabolite levels predict individual body mass changes in a small long-distance migrant, the garden warbler. Auk 111:888–899CrossRefGoogle Scholar
  36. Kocan RM, Pitts SM (1976) Blood values of canvasback duck by age, sex and season. J Wildl Dis 12:341–345CrossRefPubMedGoogle Scholar
  37. Lewandowski AH, Campbell TW, Harrison GJ (1986) Clinical chemistries. In: Harrison GJ, Harrison LR (eds) Clinical avian medicine and surgery. Saunders Company, Philadelphia, pp 192–200Google Scholar
  38. Lumeij JT, Remple JD (1991) Plasma urea, creatinine and uric acid concentrations in relation to feeding in peregrine falcons (Falco peregrinus). Avian Path 20: 79–83CrossRefGoogle Scholar
  39. Migliorini RH, Linder C, Moura JL, Veiga JAS (1973) Gluconeogenesis in a carnivorous bird (black vulture). Am J Physiol 225:1389–1392PubMedGoogle Scholar
  40. Mulley RC (1979) Haematology and blood chemistry of the black duck (Anas superciliosa). J Wildl Res 15:437–441CrossRefGoogle Scholar
  41. Padilla LR, Kathryn DVM, Huyvaert MS, Jane-Merkel LVT, Miller E, Patricia G, Parker PG (2003) Hematology, plasma chemistry, serology, and chlamydophila status of the waved albatross (Phoebastria irrorata) on the Galapagos islands. J Zoo Wildl Med 34:278–283CrossRefPubMedGoogle Scholar
  42. Perry MC, Obrecht HH, Williams BK, Kuenzel WJ (1986) Blood chemistry and hematocrit of captive and wild canvasbacks. J Wildl Manage 50:435–441CrossRefGoogle Scholar
  43. Polo FJ, Celdrán JF, Peinado VI, Viscor G, Palomeque J (1992) Hematological values for four species of birds of prey. Condor 94:1007–1013CrossRefGoogle Scholar
  44. Puerta ML, Muñoz Pulido R, Huecas V, Abelenda M (1989) Hematology and blood chemistry of chicks of White and Black Storks (Ciconia ciconia and Ciconia nigra). Comp Biochem Phys A 94:201–204CrossRefGoogle Scholar
  45. Puerta ML, Alonso JC, Huecas V, Alonso JA, Abelenda M, Munoz-Pulido R (1990) Hematology and blood chemistry of wintering Common Cranes. Condor 92:210–214CrossRefGoogle Scholar
  46. Puerta ML, García del Campo AL, Abelenda M, Fernandez A, Huecas V, Nava MP (1992) Hematological trends in flamingos, Phoenicopterus ruber. Comp Biochem Phys A 102:683–686CrossRefGoogle Scholar
  47. Quintana F, López G, Somoza G (2008) A cheap and quick method for DNA-based sexing of birds. Waterbirds 31: 485–488CrossRefGoogle Scholar
  48. Tell LA, Citino SB (1992) Hematologic and serum chemistry reference intervals for cuban Amazon parrots (Amazona leucocephala leucocephala). J Zoo Wildl Med 23:62–64Google Scholar
  49. Uhart MM, Quintana F, Karesh WB, Braselton WE (2003) Hematology, plasma biochemistry, and sero survey for selected infectious agents in southern giant petrels from patagonia, argentina. J Wildl Dis 39:359–365CrossRefPubMedGoogle Scholar
  50. Viñuela J, Ferrer M, Recio F (1991) Age-related variations in plasma levels of alkaline phosphatase, calcium and inorganic phosphorus in chicks of two species of raptors. Comp Biochem Phys A 99:49–54CrossRefGoogle Scholar
  51. Weimerskirch H, Jouventin P (1998) Changes in population sizes and demographic parameters of six albatross species breeding on the French sub-antarctic islands”. In Robertson G, Gales R (eds) Albatross biology and conservation. Surrey Beatty and Sons, Australia, pp. 84–91Google Scholar
  52. Work TM (1996) Weights, hematology, and serum chemistry of seven species of free-ranging tropical pelagic seabirds. J Wildl Dis 32:643–657CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Miguel Ferrer
    • 1
  • Virginia Morandini
    • 1
  • Lynelle Perry
    • 2
  • Marc Bechard
    • 2
  1. 1.Applied Ecology GroupEstación Biológica de Doñana (CSIC)SevilleSpain
  2. 2.Department of Biological Sciences, Raptor Research CenterBoise State UniversityBoiseUSA

Personalised recommendations