Polar Biology

, Volume 40, Issue 7, pp 1451–1463

Latitudinal dependence of body condition, growth rate, and stable isotopes of juvenile capelin (Mallotus villosus) in the Bering and Chukchi Seas

  • Mark B. Barton
  • John R. Moran
  • Johanna J. Vollenweider
  • Ron A. Heintz
  • Kevin M. Boswell
Original Paper


Capelin occupy a key trophic role and have a broad latitudinal distribution in the northeastern Pacific and Arctic Oceans. Understanding their adaptation to a range of conditions is important to predicting how they will respond to climate change. To quantify the variation in body condition in different physical environments, we measured energy density, RNA/DNA ratios, carbon and nitrogen stable isotope ratios in 62 juvenile capelin along the Western Alaskan coast from Bristol Bay to Point Barrow ranging across approximately 14° of latitude. Energy density correlated positively with latitude, whereas RNA/DNA (instantaneous growth index) was strongly correlated with sea surface temperature, indicating that optimal growth of capelin was achieved at ~9 °C, followed by rapid decreases in RNA/DNA ratios at higher temperatures. δ13C and δ15N had strong, inverse nonlinear relationships with latitude. Depletion of δ13C seen in capelin North of Bristol Bay may be related to the incorporation of allochthonous basal resources into the diets of juvenile capelin from nearby riverine inputs. Observed enrichment of δ15N North of Bristol Bay is likely to be related to incorporation of higher trophic level prey items. Given inverse relationship between δ13C and δ15N, these prey items are likely available due to the increased diversity of basal resources from increased inputs of riverine organic material.


Capelin Latitude Isotopes Nitrogen Carbon Food web Energy allocation Growth Lipid RNA/DNA 


  1. Anthony JA, Roby DD, Turco KR (2000) Lipid content and energy density of forage fishes from the northern Gulf of Alaska. J Exp Mar Biol Ecol 248:53–78. doi:10.1016/S0022-0981(00)00159- CrossRefPubMedGoogle Scholar
  2. Arimitsu ML, Piatt JF, Litzow MA et al (2008) Distribution and spawning dynamics of capelin (Mallotus villosus) in Glacier Bay, Alaska: a cold water refugium. Fish Oceanogr 17:137–146. doi:10.1111/j.1365-2419.2008.00470.x CrossRefGoogle Scholar
  3. Auel H, Werner I (2003) Feeding, respiration and life history of the hyperiid amphipod Themisto libellula in the Arctic marginal ice zone of the Greenland Sea. J Exp Mar Biol Ecol 296:183–197. doi:10.1016/S0022-0981(03)00321-6 CrossRefGoogle Scholar
  4. Benke A, Cushing C (2006) Rivers of North America, 1st edn. Elsevier Academic Press, BurlingtonGoogle Scholar
  5. Biro PA, Post JR, Abrahams MV (2005) Ontogeny of energy allocation reveals selective pressure promoting risk-taking behaviour in young fish cohorts. Proc R Soc B 272:1443–1448. doi:10.1098/rspb.2005.3096 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Caldarone EM, Wagner M, Onge-burns JS, Buckley LI (2001) Protocol and guide for estimating nucleic acids in larval fish using a fluorescence microplate reader. Northeast Fish Sci Cent Ref Doc 1:1–22Google Scholar
  7. Chambers RC, Leggett WC (1987) Size and age at metamorphosis in marine fishes: an analysis of laboratory-reared winter flounder (Pseudopleuronectes americanus) with a review of variation in other species. Can J Fish Aquat Sci 44:1936–1947CrossRefGoogle Scholar
  8. Chambers RC, Leggett WC, Brown JA (1989) Egg size, female effects, and the correlations between early life history traits of capelin, Mallotus villosus: an appraisal at the individual level. Fish Bull 87:515–523Google Scholar
  9. Chan P, Halfar J, Williams B et al (2011) Freshening of the Alaska coastal current recorded by coralline algal Ba/Ca ratios. J Geophys Res: Biogeosci 116:1–8. doi:10.1029/2010JG001548 CrossRefGoogle Scholar
  10. Conover RJ (1988) Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiologia 167:127–142. doi:10.1007/BF00026299 CrossRefGoogle Scholar
  11. Coyle KO, Pinchuk AI (2005) Seasonal cross-shelf distribution of major zooplankton taxa on the northern Gulf of Alaska shelf relative to water mass properties, species depth preferences and vertical migration behavior. Deep-Sea Res Part II 52:217–245. doi:10.1016/j.dsr2.2004.09.025 CrossRefGoogle Scholar
  12. Coyle KO, Gibson GA, Hedstrom K et al (2013) Zooplankton biomass, advection and production on the northern Gulf of Alaska shelf from simulations and field observations. J Mar Syst 128:185–207. doi:10.1016/j.jmarsys.2013.04.018 CrossRefGoogle Scholar
  13. DeNiro M, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Ac 42:495–506CrossRefGoogle Scholar
  14. DeNiro M, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Ac 45:341–351CrossRefGoogle Scholar
  15. Dunton KH, Goodall JL, Schonberg SV et al (2005) Multi-decadal synthesis of benthic–pelagic coupling in the western arctic: role of cross-shelf advective processes. Deep-Sea Res Part II 52:3462–3477. doi:10.1016/j.dsr2.2005.09.007 CrossRefGoogle Scholar
  16. Dunton KH, Weingartner T, Carmack EC (2006) The nearshore western Beaufort Sea ecosystem: circulation and importance of terrestrial carbon in arctic coastal food webs. Prog Oceanogr 71:362–378. doi:10.1016/j.pocean.2006.09.011 CrossRefGoogle Scholar
  17. Dunton KH, Grebmeier JM, Trefry JH (2014) The benthic ecosystem of the northeastern Chukchi Sea: an overview of its unique biogeochemical and biological characteristics. Deep-Sea Res Part II 102:1–8. doi:10.1016/j.dsr2.2014.01.001 CrossRefGoogle Scholar
  18. Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of northeastern Siberia. Glob Change Biol 12:2336–2351. doi:10.1111/j.1365-2486.2006.01259.x CrossRefGoogle Scholar
  19. Eisner L, Hillgruber N, Martinson E, Maselko J (2013) Pelagic fish and zooplankton species assemblages in relation to water mass characteristics in the northern Bering and southeast Chukchi seas. Polar Biol 36:87–113. doi:10.1007/s00300-012-1241-0 CrossRefGoogle Scholar
  20. Fry B (2007) Stable isotope ecology. Springer, BerlinGoogle Scholar
  21. Gilman SE, Urban MC, Tewksbury J et al (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331. doi:10.1016/j.tree.2010.03.002 CrossRefPubMedGoogle Scholar
  22. Gjøsæter H, Båmstedt U (1998) The population biology and exploitation of capelin (Mallotus villosus) in the Barents Sea. Sarsia 83:453–496CrossRefGoogle Scholar
  23. Grebmeier JM (2012) Shifting patterns of life in the Pacific Arctic and sub-Arctic seas. Annu Rev Mar Sci 4:63–78. doi:10.1146/annurev-marine-120710-100926 CrossRefGoogle Scholar
  24. Grebmeier JM, Mcroy CP, Feder HM (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic biomass. Mar Ecol Prog Ser 48:57–67CrossRefGoogle Scholar
  25. Grebmeier JM, Overland JE, Moore SE et al (2006) A major ecosystem shift in the northern Bering Sea. Science 311:1461–1464. doi:10.1126/science.1121365 CrossRefPubMedGoogle Scholar
  26. Hansen J, Hedeholm R, Sünksen K et al (2012) Spatial variability of carbon (δ13C) and nitrogen (δ15 N) stable isotope ratios in an Arctic marine food web. Mar Ecol Prog Ser 467:47–59. doi:10.3354/meps09945 CrossRefGoogle Scholar
  27. Heintz RA, Siddon EC, Farley EV, Napp JM (2013) Correlation between recruitment and fall condition of age-0 pollock (Theragra chalcogramma) from the eastern Bering Sea under varying climate conditions. Deep-Sea Res Part II 94:150–156. doi:10.1016/j.dsr2.2013.04.006 CrossRefGoogle Scholar
  28. Helfield J, Naiman R (2016) Salmon and alder as nitrogen sources to riparian forests in a boreal Alaskan watershed. Oecologia 133:573–582CrossRefGoogle Scholar
  29. Hobson K, Welch H (1992) Determination of trophic relationships within a high arctic marine food web using Delta-13C and Delta-15 N analysis. Mar Ecol Prog Ser 84:9–18CrossRefGoogle Scholar
  30. Hood E, Scott D (2008) Riverine organic matter and nutrients in southeast Alaska affected by glacial coverage. Nat Geosci 1:583–587. doi:10.1038/ngeo280 CrossRefGoogle Scholar
  31. Hop H, Gjøsæter H (2013) Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar Biol Res 9:878–894. doi:10.1080/17451000.2013.775458 CrossRefGoogle Scholar
  32. Hopcroft RR, Kosobokova KN, Pinchuk AI (2010) Zooplankton patterns in the Chukchi Sea during summer 2004. Deep-Sea Res Part II 57:27–39. doi:10.1016/j.dsr2.2009.08.003 CrossRefGoogle Scholar
  33. Houlihan DF, Pedersen BH, Steffensen JF, Brechin J (1995) Protein synthesis, growth, and energetics in larval herring (Clupea harengus) at different feeding regimes. Fish Physiol Biochem 14:195–208CrossRefPubMedGoogle Scholar
  34. Huss M, Byström B, Strand A, Eriksson L, Persson L (2008) Influence of growth history on the accumulation of energy reserves and winter mortality in young fish. Can J Fish Aquat Sci 65:2149–2156CrossRefGoogle Scholar
  35. Johnson SW, Thedinga JF, Neff AD, Hoffman CA (2010) Fish fauna in nearshore waters of a barrier island in the western Beaufort Sea, Alaska. US Dep Commer, NOAA Tech Memo NMFSAFSC 210:1–28Google Scholar
  36. Kline TC (1999) Temporal and spatial variability of 13C/12C and 15 N/14 N in pelagic biota of Prince William Sound, Alaska. Can J Fish Aquat Sci 56:94–117CrossRefGoogle Scholar
  37. Layman CA, Arrington DA, Montaña CG et al (2007a) Can stable isotope ratios provide for community-wide measures of trophic structure. Ecology 88:42–48CrossRefPubMedGoogle Scholar
  38. Layman CA, Quattrochi JP, Peyer CM, Allgeier JE (2007b) Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol Lett 10:937–944. doi:10.1111/j.1461-0248.2007.01087.x CrossRefPubMedPubMedCentralGoogle Scholar
  39. Litzow MA, Mueter FJ (2014) Assessing the ecological importance of climate regime shifts: an approach from the North Pacific Ocean. Prog Oceanogr 120:110–119. doi:10.1016/j.pocean.2013.08.003
  40. Loecher M, Ropkins K (2015) R googlemaps and loa: unleashing R graphics power on map tiles. J Stat Softw 63:1–18CrossRefGoogle Scholar
  41. Logan JM, Jardine TD, Miller TJ et al (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846. doi:10.1111/j.1365-2656.2008.01394.x CrossRefPubMedGoogle Scholar
  42. McConnaughey T, McRoy CP (1979) Food-Web structure and the fractionation of carbon isotopes in the Bering sea. Mar Biol 53:257–262. doi:10.1007/BF00952434 CrossRefGoogle Scholar
  43. Mogensen S, Post JR (2012) Energy allocation strategy modifies growth-survival trade-offs in juvenile fish across ecological and environmental gradients. Oecologia 168:923–933. doi:10.1007/s00442-011-2164-0 CrossRefPubMedGoogle Scholar
  44. Moline MA, Karnovsky NJ, Brown Z et al (2008) High latitude changes in ice dynamics and their impact on polar marine ecosystems. Ann NY Acad Sci 1134:267–319. doi:10.1196/annals.1439.010 CrossRefPubMedGoogle Scholar
  45. Nemeth MJ, Priest J, Degan DJ, Shippen K, Link MR (2014) Sockeye salmon smolt abundance and inriver distribution: results from the Kvichak, Ugashik, and Egegik rivers in Bristol Bay, Alaska, 2014Google Scholar
  46. Olsen EM, Lilly GR, Heino M et al (2005) Assessing changes in age and size at maturation in collapsing populations of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 62:811–823. doi:10.1139/f05-065 CrossRefGoogle Scholar
  47. Parkinson CL, Comiso JC (2013) On the 2012 record low Arctic sea ice cover: combined impact of preconditioning and an August storm. Geophys Res Lett 40:1356–1361. doi:10.1002/grl.50349 CrossRefGoogle Scholar
  48. Peterson BJ, Fry B (2014) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  49. Peterson BJ, Holmes RM, McClelland JW et al (2002) Increasing river discharge to the Arctic ocean. Science 298:2171–2173. doi:10.1126/science.1077445 CrossRefPubMedGoogle Scholar
  50. Pinchuk AI, Coyle KO, Farley EV, Renner HM (2013) Emergence of the Arctic Themisto libellula (Amphipoda: Hyperiidae) on the southeastern Bering Sea shelf as a result of the recent cooling, and its potential impact on the pelagic food web. ICES J Mar Sci 70:1244–1254CrossRefGoogle Scholar
  51. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. doi:10.2307/3071875 CrossRefGoogle Scholar
  52. Post JR, Parkinson EA (2001) Energy allocation strategy in young fish: allometry and survival. Ecology 82:1040–1051CrossRefGoogle Scholar
  53. Post DM, Layman CA, Arrington DA et al (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. doi:10.1007/s00442-006-0630-x CrossRefPubMedGoogle Scholar
  54. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  55. Rypel AL (2012) Meta-analysis of growth rates for a circumpolar fish, the northern pike (Esox lucius), with emphasis on effects of continent, climate and latitude. Ecol Freshw Fish 21:521–532. doi:10.1111/j.1600-0633.2012.00570.x CrossRefGoogle Scholar
  56. Saito H, Kiørboe T (2001) Feeding rates in the chaetognath Sagitta elegans: effects of prey size, prey swimming behaviour and small-scale turbulence. J Plankton Res 23:1385–1398. doi:10.1093/plankt/23.12.1385 CrossRefGoogle Scholar
  57. Schell D, Barnett B, Vinette K (1998) Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Mar Ecol Prog Ser 162:11–23. doi:10.3354/meps162011 CrossRefGoogle Scholar
  58. Schuur EAG, Bockheim J, Canadell JG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714. doi:10.1641/B580807 CrossRefGoogle Scholar
  59. Sherwood GD, Rideout RM, Fudge SB, Rose GA (2007) Influence of diet on growth, condition and reproductive capacity in Newfoundland and Labrador cod (Gadus morhua): insights from stable carbon isotopes (δ13C). Deep-Sea Res Part II 54:2794–2809. doi:10.1016/j.dsr2.2007.08.007 CrossRefGoogle Scholar
  60. Shoji J, Toshito SI, Mizuno KI et al (2011) Possible effects of global warming on fish recruitment: shifts in spawning season and latitudinal distribution can alter growth of fish early life stages through changes in day length. ICES J Mar Sci 68:1165–1169. doi:10.1093/icesjms/fsr059 CrossRefGoogle Scholar
  61. Siddon EC, Heintz RA, Mueter FJ (2013) Conceptual model of energy allocation in walleye pollock (Theragra chalcogramma) from age-0 to age-1 in the southeastern Bering Sea. Deep-Sea Res Part II 94:140–149. doi:10.1016/j.dsr2.2012.12.007 CrossRefGoogle Scholar
  62. Smith RW, Ottema C (2006) Growth, oxygen consumption, and protein and RNA synthesis rates in the yolk sac larvae of the African catfish (Clarias gariepinus). Comp Biochem Physiol A 143:315–325CrossRefGoogle Scholar
  63. Sorte CJB, Williams SL, Carlton JT (2010) Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr 19:303–316. doi:10.1111/j.1466-8238.2009.00519.x CrossRefGoogle Scholar
  64. Sreenivasan A (2011) Nucleic acid ratios as an index of growth and nutritional ecology in Pacific cod (Gadus macrocephalus), walleye pollock (Theragra chalcogramma), and Pacific herring (Clupea pallasii). University of Alaska Fairbanks, FairbanksGoogle Scholar
  65. Stabeno PJ, Reed RK, Schumacher JD (1995) The Alaska coastal current: continuity of transport and forcing. J Geophys Res 100:2477–2485CrossRefGoogle Scholar
  66. Steele J, Thorpe S, Turekian K (2010) Ocean currents: a derivative of the encyclopedia of ocean sciences. Academic Press, LondonGoogle Scholar
  67. Sturdevant MV, Orsi JA, Fergusson EA (2012) Diets and trophic linkages of epipelagic fish predators in coastal southeast Alaska during a period of warm and cold climate years, 1997–2011. Mar Coast Fish 4:526–545. doi:10.1080/19425120.2012.694838 CrossRefGoogle Scholar
  68. Van Noordwijk AJ, De Jong G (2014) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142Google Scholar
  69. Vander Zanden M, Rasmussen J (2001) Variation in 15 N and 13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066CrossRefGoogle Scholar
  70. Vesin J, Legget W, Able K (1981) Feeding ecology of capelin (Mallotus villosus) in the estuary and Western Gulf of St. Lawrance and its multispecies implications. Can J Fish Aquat Sci 38:257–267CrossRefGoogle Scholar
  71. Vollenweider JJ, Heintz RA, Schaufler L, Bradshaw R (2011) Seasonal cycles in whole-body proximate composition and energy content of forage fish vary with water depth. Mar Biol 158:413–427. doi:10.1007/s00227-010-1569-3 CrossRefPubMedGoogle Scholar
  72. Walsh JJ, Dieterle DA, Maslowski W, Whitledge TE (2004) Decadal shifts in biophysical forcing of Arctic marine food webs: numerical consequences. J Geophys Res C Ocean 109:1–30. doi:10.1029/2003JC001945 CrossRefGoogle Scholar
  73. Weber LP, Higgins PS, Carlson RI, Janz DM (2003) Development and validation of methods for measuring multiple biochemical indices of condition in juvenile fishes. J Fish Biol 63:637–658. doi:10.1046/j.1095-8649.2003.00178.x CrossRefGoogle Scholar
  74. Weingartner TJ, Danielson SL, Royer TC (2005) Freshwater variability and predictability in the Alaska coastal current. Deep-Sea Res Part II 52:169–191. doi:10.1016/j.dsr2.2004.09.030 CrossRefGoogle Scholar
  75. Woodgate RA, Weingartner TJ, Lindsay R (2012) Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys Res Lett 39:2–7. doi:10.1029/2012GL054092 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mark B. Barton
    • 1
  • John R. Moran
    • 2
  • Johanna J. Vollenweider
    • 2
  • Ron A. Heintz
    • 2
  • Kevin M. Boswell
    • 1
  1. 1.Department of Biological Sciences, Marine Sciences ProgramFlorida International UniversityNorth MiamiUSA
  2. 2.Auke Bay Laboratories, Alaska Fisheries Science CenterNational Marine Fisheries Service, NOAAJuneauUSA

Personalised recommendations