Polar Biology

, Volume 39, Issue 11, pp 2155–2167 | Cite as

Species composition and abundance of the shallow water fish community of Kongsfjorden, Svalbard

  • Markus Brand
  • Philipp Fischer
Original Paper


Projections show that climate change will lead to structural change in Arctic ecosystems. Studies project the extinction of local species and intense species invasion to the Arctic Ocean. A lack of basic biological data about the Arctic shallow water fish community will make it hard to assess whether these communities will change or not. Baseline studies in combination with future reassessments are needed to establish a basic knowledge about the change of these communities. This study provides a quantitative first time description of the shallow water fish community of Kongsfjorden, Svalbard. The fish assemblage in the depth range from 3 to 12 m was determined with respect to abundance and species composition. Among a total sample size of 2804 specimens, the presence of 12 fish species and one family (Liparidae) was detected. Myoxocephalus scorpius (shorthorn sculpin) (74.9 %), Gadus morhua (Atlantic cod) (17.2 %), and Gymnocanthus tricuspis (Arctic staghorn sculpin) (3.8 %) were identified as the most abundant species across all sampling sites. A significant relationship between algal coverage and fish abundance was detected. Furthermore, we demonstrated a fjord inward increase in biodiversity along the south shore that might be correlated with a change in hydrographic regime.


Demersal Sublittoral Coastal habitats Algal belts Species diversity 



This work was performed at the International Arctic Environmental Research and Monitoring Facility in Ny-Ålesund, Spitsbergen, Norway. We thank the crew of the AWIPEV Arctic Research Base for their great support of our fieldwork. Furthermore, we appreciate the helpful comments of the reviewers of this manuscript. We would also like to thank Michael Greenacre for statistical support.

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animal were followed.


  1. Able KW (1990) A revision of Arctic snailfishes of the genus Liparis (Scorpaeniformes: cyclopteridae). Copeia 1990:476–492. doi: 10.2307/1446352 CrossRefGoogle Scholar
  2. ACIA (2004) Impacts of a Warming Arctic. Cambridge University Press, CambridgeGoogle Scholar
  3. Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol. doi: 10.1007/s00300-015-1870-1 Google Scholar
  4. Byrne D, Uprichard E (2012) Cluster Analysis. SAGE Publications Ltd, LondonCrossRefGoogle Scholar
  5. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251CrossRefGoogle Scholar
  6. Christiansen JS, Mecklenburg CW, Karamushko OV (2014) Arctic marine fishes and their fisheries in light of global change. Global Change Biol 20:352–359. doi: 10.1111/geb.12395 CrossRefGoogle Scholar
  7. Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  8. Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
  9. Colwell RK (2009) Biodiversity: Concepts, patterns and measurement. In: Levin Simon A (ed) The Princeton guide to ecology, 1st edn. Princeton University Press, Princeton, pp 257–263Google Scholar
  10. Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden. Svalbard. J Geophys Res 110:C12005. doi: 10.1029/2004JC002757 CrossRefGoogle Scholar
  11. Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34. doi: 10.1029/2007GL029948
  12. Crowder LB, Cooper WE (1982) Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802–1813. doi: 10.2307/1940122 CrossRefGoogle Scholar
  13. DGUV expert committee for underground engineering (2011) BGR/GUV-R 2112—–Einsatz von Forschungstauchern. Deutsche Gesetzliche Unfallversicherung e.V. (DGUV), BerlinGoogle Scholar
  14. di Prisco G (2000) Life style and biochemical adaptation in Antarctic fishes. J Mar Syst 27:253–265. doi: 10.1016/S0924-7963(00)00071-3 CrossRefGoogle Scholar
  15. Enevoldsen LT, Heiner I, DeVries AL, Steffensen JF (2003) Does fish from the Disko Bay area of Greenwald possess antifreeze proteins during the summer? Polar Biol 26:365–370Google Scholar
  16. Ennis GP (1970) Age, growth, and sexual naturity of the shorthorn sculpin, Myoxocephalus scorpius, in Newfoundland waters. J Fish Res Bd Can 27:2155–2158. doi: 10.1139/f70-244 CrossRefGoogle Scholar
  17. Fischer P (2000) Test of competitive interactions for space between two benthic fish species, burbot Lota lota, and stone loach Barbatula barbatula. Environ Biol Fish 58:439–446. doi: 10.1023/A:1007631107521 CrossRefGoogle Scholar
  18. Fischer P (2004) Effects of intraspecific competition and predation risk in the littoral-benthic community: a case study of juvenile burbot (Lota Iota). Boreal Environ Res 9:213–225Google Scholar
  19. Fischer P, Eckmann R (1997a) Seasonal changes in fish abundance, biomass and species richness in the littoral zone of a large European lake, Lake Constance, Germany. Arch Hydrobiol 139:433–448Google Scholar
  20. Fischer P, Eckmann R (1997b) Spatial distribution of littoral fish species in a large European lake, Lake Constance, Germany. Arch Hydrobiol 140:91–116CrossRefGoogle Scholar
  21. Fischer P, Schwanitz M, Posner U, Loth R, Brand M, Schröder F (2016) The first year of the new Arctic AWIPEV-COSYNA Underwater Observatory in Kongsfjorden. Ocean Sci Discuss, Spitsbergen. doi: 10.5194/os-2016-52 Google Scholar
  22. Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim Chang 5:673–678. doi: 10.1038/nclimate2647 CrossRefGoogle Scholar
  23. Fredriksen S, Bartsch I, Wiencke C (2014) New additions to the benthic marine flora of Kongsfjorden, western Svalbard, and comparison between 1996/1998 and 2012/2013. Bot Mar 57(3):203–216. doi: 10.1515/bot-2013-0119 CrossRefGoogle Scholar
  24. Haug T, Gulliksen B (1982) Size, age, occurrence, growth, and food of Greenland halibut, Reinhardtiushippoglossoides (Walbaum) in coastal waters of western Spitzbergen. Sarsia 67:293–297. doi: 10.1080/00364827.1982.10421343 CrossRefGoogle Scholar
  25. Hayward PJ, Ryland JS (2005) Handbook of the Marine Fauna of North-West Europe. Oxford University Press Inc., New YorkGoogle Scholar
  26. Holland S (2010) Diversity. Hunt Mountain Software, AthensGoogle Scholar
  27. Hop H, Gjøsæter H (2013) Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar Biol Res 9:878–894. doi: 10.1080/17451000.2013.775458 CrossRefGoogle Scholar
  28. Hop H, Pearson T, Hegseth EN et al (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208. doi: 10.1111/j.1751-8369.2002.tb00073.x CrossRefGoogle Scholar
  29. Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthicmacroalgae in Kongsfjorden. Svalbard Bot. Mar 55:399–414. doi: 10.1515/bot-2012-0097 Google Scholar
  30. Hubert WA, Pope KL, Dettmers JM (2012) Passive Capture Techniques. Nebraska Coop Fish Wildl Res Unit 11:244–246Google Scholar
  31. Hui W, Gel YR, Gastwirth JL (2008) lawstat: an R Package for law, public policy and biostatistics. J Stat Softw 28:1–26CrossRefGoogle Scholar
  32. ICES (2005) Spawning and life history information for North Atlantic cod stocks. ICES Cooperative Research Report 274Google Scholar
  33. Johnson DL, Beaumier RA (1988) Selection of habitat structure interstice size by bluegills and largemouth bass in ponds. Trans Am Fish Soc. doi: 10.1577/1548-8659 Google Scholar
  34. Jørgensen LL, Gulliksen B (2001) Rocky bottom fauna in Arctic Kongsfjord (Svalbard) studied by means of suction sampling and photography. Polar Biol 24:113–121. doi: 10.1007/s003000000182 CrossRefGoogle Scholar
  35. Keast A (1985) The piscivore feeding guild of fishes in small freshwater ecosystems. Environ Biol Fish 12:119–129. doi: 10.1007/BF00002764 CrossRefGoogle Scholar
  36. Kruskal WH, Wallis AW (1952) Use of Ranks in One-Criterion variance analysis. J Amer Statist Assoc 47:583–621. doi: 10.2307/2280779 CrossRefGoogle Scholar
  37. Lamp F (1966) Beitrage zur Biologie der Seeskorpione Myoxocephalus scorpius (L.) und Taurulus bubalis(Euphr.) in der Kieler Forde. Kieler Meeresforsch 22:1–29Google Scholar
  38. Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord(Spitsbergen). Polar Biol 24:512–522CrossRefGoogle Scholar
  39. Lønne OJ, Gulliksen B (1989) Size, Age and Diet of Polar Cod, Boreogadus saida (Lepechin 1773), in Ice Covered Waters. Polar Biol 9:187–191CrossRefGoogle Scholar
  40. Luksenburg JA, Pedersen T (2002) Sexual and geographical variation in life history parameters of the shorthorn sculpin. J Fish Biol 61:1453–1464. doi: 10.1111/j.1095-8649.2002.tb02489.x CrossRefGoogle Scholar
  41. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 18:50–60CrossRefGoogle Scholar
  42. Mark FC (2013) Physical oceanography during HEINCKE cruise HE408. Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, doi: 10.1594/PANGAEA.824703
  43. Muus BJ, Nielsen JG (1999) Sea Fish. Scandinavian Fishing Year Book, HedehuseneGoogle Scholar
  44. Nemenyi, PB (1963) Distribution-free multiple comparisons. PhD thesis, Princeton UniversityGoogle Scholar
  45. Paar M, Voronkov A, Hop H, Brey T, Bartsch I, Schwanitz M, Wiencke C, Lebreton B, Asmus R, Asmus H (2016) Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol. doi: 10.1007/s00300-015-1760-6 Google Scholar
  46. Persson L, Eklöv P (1995) Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76:70–81. doi: 10.2307/1940632 CrossRefGoogle Scholar
  47. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theoret Biol 13:131–144. doi: 10.1016/0022-5193(66)90013-0 CrossRefGoogle Scholar
  48. Pielou EC (1975) Ecological Diversity. Wiley, New YorkGoogle Scholar
  49. Pierce GJ, Hastie LC, Guerra A, Thorpe RS, Howard FG, Boyle PR (1994) Morphometric variation in Loligo forbesi and Loligo vulgaris: regional, seasonal, sex, maturity and worker differences. Fish Res 21:127–148. doi: 10.1016/0165-4617836(94)90100-7 CrossRefGoogle Scholar
  50. Pohlert T (2015) PMCMR: Calculate Pairwise Multiple Comparisons of Mean Rank Sums. R package version 1.2.
  51. R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  52. Raup DM (1975) Taxonomic diversity estimation using rarefaction. Paleobiology 1:333–342. doi: 10.2307/2400135 CrossRefGoogle Scholar
  53. Renaud P, Tessmann M, Evenset A, Christensen G (2011) Benthic food-web structure of an Arctic fjord (Kongsfjorden, Svalbard). Mar Biol Res 7:13–26. doi: 10.1080/17451001003671597 CrossRefGoogle Scholar
  54. Sarvas TH, Fevolden SE (2005) Pantophysin (Pan I) locus divergence between inshore v. offshore and northern v. southern populations of Atlantic cod in the north-east Atlantic. J Fish Biol 67:444–469. doi: 10.1111/j.1095-8649.2005.00738.x CrossRefGoogle Scholar
  55. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x CrossRefGoogle Scholar
  56. Steffensen JF (2002) Metabolic cold adaption of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact! Comp Biochem Physiol A 132:789–795CrossRefGoogle Scholar
  57. Stempniewicz L, Błachowiak-Samołyk K, Węsławski JM (2007) Impact of climate change on zooplankton communities, seabird populations and Arctic terrestrial ecosystem - A scenario. Deep-Sea Res Pt II 4754:2934–2945. doi: 10.1016/j.dsr2.2007.08.012 CrossRefGoogle Scholar
  58. Sundby S, Nakken O (2008) Spatial shifts in spawning habitats of Arcto-Norwegian cod related to multidecadal climate oscillations and climate change. ICES J Mar Sci 65:953–962. doi: 10.1093/icesjms/fsn085 CrossRefGoogle Scholar
  59. Svendsen H, Beszczynska-Møller A, Hagen JO et al (2002) The physical environment of Kongsfjorden/Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166. doi: 10.1111/j.1751-8369.2002.tb00072.x CrossRefGoogle Scholar
  60. Voronkov A, Hop H, Gulliksen B (2013) Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden. Svalbard Polar Res 32:11208. doi: 10.3402/polar.v32i0.11208 Google Scholar
  61. Warnes GR, Ben B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2015) gplots: various R programming tools for plotting data. Rpackage version 2.17.0Google Scholar
  62. Wehkamp M, Fischer P (2014) A practical guide to the use of consumer-level digital still cameras for precise stereogrammetric in situ assessments in aquatic environments. Underwater Technol 32(2):111–128CrossRefGoogle Scholar
  63. Werner EE (1977) Species packing and niche complementarity in three sunfishes. Am Nat 111:553–578. doi: 10.1086/283184 CrossRefGoogle Scholar
  64. Werner EE, Gilliam JF, Hall DJ, Mittelbach GG (1983) An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540. doi: 10.2307/1937508 CrossRefGoogle Scholar
  65. Węsławski JM, Linkowski TB, Herra T (1990) Fishes. In: Klekowski RZ, Węsławski JM (eds) Atlas of the Marine Fauna of Southern Spitsbergen, vol 1., VertebrateUniversity of Gdańsk, Institute of Oceanology, Gdańsk, pp 67–195Google Scholar
  66. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20CrossRefGoogle Scholar
  67. Wiencke C, Vögele B, Kovaltchouk NA, Hop H (2004) Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalbard. Ber Polarforsch Meeresforsch 492:55–62Google Scholar
  68. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80–83. doi: 10.2307/3001968 CrossRefGoogle Scholar
  69. Willis K, Cottier F, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Marine Syst 61:39–54CrossRefGoogle Scholar
  70. Wong PP, Losada IJ, Gattuso J-P, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandadrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 361–409Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Biologische Anstalt Helgoland, Centre for Scientific DivingAlfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungHelgolandGermany

Personalised recommendations