Polar Biology

, Volume 40, Issue 4, pp 903–916 | Cite as

Temporal variation in isotopic composition of Pygoscelis penguins at Ardley Island, Antarctic: Are foraging habits impacted by environmental change?

  • Pablo Negrete
  • Michel Sallaberry
  • Gonzalo Barceló
  • Karin Maldonado
  • Franco Perona
  • Rona A. R. McGill
  • Petra Quillfeldt
  • Pablo SabatEmail author
Original Paper


Several studies have suggested that penguins are undergoing a major restructuring of their feeding habits and distribution after drastic climatic changes in the Antarctic Peninsula region. With the objective of estimating potential medium-term and inter-annual variations in trophic niche, we measured δ 15N and δ 13C in feather samples of pygoscelid penguins from museum specimens (1982–1984) and in blood and feather samples from 2009/10–2011 collected from animals on Ardley Island. Current penguin feathers had lower δ 13C and δ 15N values and were more similar to Antarctic krill values, than feathers in 1982–1984 and blood from 2009/10-2011. Moreover, δ 13C and δ 15N values from museum feathers and modern samples occupied a larger isotopic space in Gentoo Penguins (Pygoscelis papua), compared to Adélie Penguins (Pygoscelis adeliae) and Chinstrap Penguins (Pygoscelis antarctica). Our results from feathers samples indicated that penguins have decreased their consumption of fish and other prey of higher trophic levels in the early interbreeding period (EIBP), while increasing the amount of euphausiids (Antarctic krill Euphausia superba) taken. The isotopic values of the species suggest that foraging sites varied significantly over time and seasonally. We suggest that environmental changes may have modified the feeding habits of pygoscelid penguins, resulting in changed foraging behaviour in the EIBP, and altering the secondary prey consumption. Prey choice in breeding pygoscelid species is probably limited by the foraging range around the breeding colony and competitive exclusion between congeners.


Antarctic Peninsula Bayesian-based mixed models Feeding habits Stable isotope Penguins Pygoscelis 



We are very grateful to the following organizations and persons: Instituto Antártico Chileno, Museo Nacional de Historia Natural de Chile and Juan C. Torres for logistical, fieldwork and collection support. Special thanks to Gabriele Schafheitle, Ina Hampel and staff of Ecophysiology Lab, Universidad de Chile for help in analysis, and to the Life Science Mass Spectrometry Facility at SUERC. We thank FONDECYT grant No. 1120276 to PS. PQ was supported by a grant of the DFG, Germany.


  1. Ainley D, Ribic C, Fraser W (1994) Ecological structure among migrant and resident seabirds of the Scotia-Weddell confluence region. J Anim Ecol 63:347–364CrossRefGoogle Scholar
  2. Antarctic Treaty (2009) Measures adopted at the thirty-second consultative meeting: management plan for Antarctic Specially Protected Area No. 150 Ardley Island, Maxwell Bay, King George IslandGoogle Scholar
  3. Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103CrossRefPubMedGoogle Scholar
  4. Bearhop S, Adams C, Waldron S, Fuller R, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012CrossRefGoogle Scholar
  5. Bengtson JL, Croll DA, Goebel ME (1993) Diving behaviour of chinstrap penguins at Seal Island. Antarct Sci 5:9–15CrossRefGoogle Scholar
  6. Berón MP, Coria NR, Favero M (2002) Monitoreo de la dieta post-reproductiva del pingüino papua (Pygoscelis papua) en Isla Laurie (Orcadas del Sur, Antártida): período 1997-1999. Ornitol Neotrop 13:413–422Google Scholar
  7. Bond A, Lavers J (2014) Climate changes alters the trophic niche of a declining apex marine predator. Glob Change Biol 20:2100–2107CrossRefGoogle Scholar
  8. Carlini A, Coria N, Santos M, Negrete J, Juares M, Daneri G (2009) Responses of Pygoscelis adeliae and P. papua populations to environmental changes at Isla 25 de Mayo (King George Island). Polar Biol 32:1427–1433CrossRefGoogle Scholar
  9. CCAMLR (2004) CCAMLR ecosystem monitoring program. Standard methods. Commission for the Conservation of Antarctic Marine Living Resources, North HobartGoogle Scholar
  10. Cherel Y, Hobson K (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol-Prog Ser 329:281–287CrossRefGoogle Scholar
  11. Cherel Y, Hobson KA, Hassani S (2005) Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiol Biochem Zool 78:106–115CrossRefPubMedGoogle Scholar
  12. Clarke J, Manly B, Kerry K, Gardner H, Franchi E, Corsolini S, Focardi S (1998) Sex differences in Adélie penguin foraging strategies. Polar Biol 20:248–258CrossRefGoogle Scholar
  13. Corbisier TN, Petti MA, Skowronski RS, Brito TA (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82CrossRefGoogle Scholar
  14. Croxall J, Trathan P, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 297:1510–1514CrossRefPubMedGoogle Scholar
  15. Dunton K (2001) δ 15N and δ 13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112Google Scholar
  16. Ferron FA, Simões JC, Aquino FE, Setzer AW (2004) Air temperature time series for King George Island, Antarctica. Pesquisa Antartica Brasileira 4:155–169Google Scholar
  17. Frazer T (1996) Stable isotope composition (δ 13C and δ 15N) of larval krill, Euphausia superba, and two of its potential food sources in winter. J Plankton Res 18:1413–1426CrossRefGoogle Scholar
  18. Fry B, Sherr E (1989) δ 13C measurements as indicators of carbon flow in marine and freshwater systems. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer-Verlag, New York, pp 196–229CrossRefGoogle Scholar
  19. Harrigan P, Zieman JC, Macko SA (1989) The base of nutritional support for the gray snapper (Lutjanus griseus): an evaluation based on a combined stomach content and stable isotope analysis. Bull Mar Sci 44:65–77Google Scholar
  20. Hilton G, Thompson D, Sagar P, Cuthbert R, Cherel Y, Bury S (2006) A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the Rockhopper penguin Eudyptes chrysocome. Glob Change Biol 12:611–625CrossRefGoogle Scholar
  21. Hinke JT, Polito MJ, Reiss CS, Trivelpiece SG, Trivelpiece WZ (2012) Flexible reproductive timing can buffer reproductive success of Pygoscelis spp. penguins in the Antarctic Peninsula region. Mar Ecol-Prog Ser 454:91–104CrossRefGoogle Scholar
  22. Hinke JT, Polito MJ, Goebel ME, Jarvis S, Reiss CS, Thorrold SR, Trivelpiece WZ, Watters GM (2015) Spatial and isotopic niche partitioning during winter in Chinstrap and Adélie penguins from the South Shetland Islands. Ecosphere 6:1–32CrossRefGoogle Scholar
  23. Hobson K, Clark R (1992) Assessing avian diets using stable isotopes: I. Turnover of 13C in tissues. Condor 94:181–188CrossRefGoogle Scholar
  24. Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New HavenGoogle Scholar
  25. Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461CrossRefGoogle Scholar
  26. IPCC (2001) In: McCarthy J, Canziani O, Leary N, Dokken D, White K (eds) Climate Change 2001: impacts, adaptation and vulnerability, contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, UKGoogle Scholar
  27. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602CrossRefPubMedGoogle Scholar
  28. Keeling C (1979) The Suess effect: 13 carbon-14 carbon interactions. Environ Int 2:229–300CrossRefGoogle Scholar
  29. Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zoolog 78:1–27CrossRefGoogle Scholar
  30. Knox G (1984) The key role of krill in the ecosystem of the Southern Ocean with special reference to the Convention on the Conservation of Antarctic Marine Living Resources. Ocean Manag 9:113–156CrossRefGoogle Scholar
  31. Layman C, Arrington DA, Montaña C, Post D (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48CrossRefPubMedGoogle Scholar
  32. Lynch H, La Rue M (2014) First global census of the Adélie penguin. Auk 131:457–466CrossRefGoogle Scholar
  33. Lynch H, Naveen R, Trathan P, Fagan W (2012) Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93:1367–1377CrossRefPubMedGoogle Scholar
  34. Lynnes A, Reid K, Croxall J, Trathan P (2002) Conflict or co-existence? Foraging distribution and competition for prey between Adélie and Chinstrap Penguins. Mar Biol 141:1165–1174CrossRefGoogle Scholar
  35. Martínez del Rio C, Sabat P, Anderson-Sprecher R, Gonzalez S (2009a) Dietary and isotopic specialization: the isotopic niche of three Cinclodes ovenbirds. Oecologia 161:149–159CrossRefGoogle Scholar
  36. Martínez del Rio C, Wolf N, Carleton S, Gannes L (2009b) Isotopic ecology 10 years after a call for more laboratory experiments. Biol Rev 84:91–111CrossRefGoogle Scholar
  37. Masello J, Mundry R, Poisbleau M, Demongin L, Voigt C, Wikelski M, Quillfeldt P (2010) Diving seabirds share foraging space and time within and among species. Ecosphere 1:1–28CrossRefGoogle Scholar
  38. Maturana CS, Gérard K, Díaz A, David B, Féral JP, Poulin E (2016) Mating system and evidence of multiple paternity in the Antarctic brooding sea urchin Abatus agassizii. Polar Biol. doi: 10.1007/s00300-016-2001-3 Google Scholar
  39. Mayewski P, Meredith M, Summerhayes C, Turner T, Worby A, Barrett P, Casassa G et al (2009) State of the Antarctic and Southern Ocean climate system. Rev Geophys 47:1003–1029CrossRefGoogle Scholar
  40. McClintock J, Ducklow H, Fraser W (2008) Ecological responses to climate change on the Antarctic Peninsula. Am Sci 96:302–310CrossRefGoogle Scholar
  41. McNeil B, Matear R, Tilbrook B (2001) Does carbon 13 track anthropogenic CO2 in the Southern Ocean? Global Biogeochem Cy 15:597–613CrossRefGoogle Scholar
  42. Michalik A, McGill RA, Furness RW, Eggers T, van Noordwijk HJ, Quillfeldt P (2010) Black and white–does melanin change the bulk carbon and nitrogen isotope values of feathers? Rapid Commun Mass Sp 24:875–878CrossRefGoogle Scholar
  43. Miller AK, Kappes M, Trivelpiece S, Trivelpiece W (2010) Foraging-niche separation of breeding Gentoo and Chinstrap Penguins, South Shetland Islands, Antarctica. Condor 112:683–695CrossRefGoogle Scholar
  44. Minagawa M, Wada E (1984) Stepwise enrichment of 15 N along food chains: further evidence and the relation between d15 N and animal age. Geochim Cosmochim Ac 48:1135–1140CrossRefGoogle Scholar
  45. Morrison K, Bury S, Thompson D (2014) Higher trophic level prey does not represent a higher quality diet in a threatened seabird: implications for relating population dynamics to diet shifts inferred from stable isotopes. Mar Biol 161:2243–2255CrossRefGoogle Scholar
  46. Newsome S, Martínez del Rio C, Bearhop S, Phillips D (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436CrossRefGoogle Scholar
  47. Newsome S, Yeakel J, Wheatley P, Tinker T (2012) Tools for quantifying isotopic niche space and dietary variation at the individual and population level. J Mammal 93:329–341CrossRefGoogle Scholar
  48. Newsome S, Sabat P, Wolf N, Rader JA, Martínez del Río C (2015) Multi-tissue δ2H analysis reveals altitudinal migration and tissue-specific discrimination patterns in Cinclodes. Ecosphere 6:1–18CrossRefGoogle Scholar
  49. Nyssen F, Brey T, Dauby P, Graeve M (2005) Trophic position of Antarctic amphipods: enhanced analysis by a 2-dimensional biomarker assay. Mar Ecol-Prog Ser 300:135–145CrossRefGoogle Scholar
  50. Paritte JM, Kelly JF (2009) Effect of cleaning regime on stable-isotope ratios of feathers in japanese quail (Coturnix japonica). Auk 126:165–174CrossRefGoogle Scholar
  51. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  52. Parnell AC, Inger R, Bearhop S, Jackson AL (2013) SIAR: stable isotope analysis in R.
  53. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672CrossRefPubMedPubMedCentralGoogle Scholar
  54. Phillips D, Gregg J (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269CrossRefPubMedGoogle Scholar
  55. Phillips D, Newsome S, Gregg J (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527CrossRefPubMedGoogle Scholar
  56. Phillips R, Bearhop S, McGill R, Dawson D (2009) Stable isotopes reveal individual variation in migration strategies and habitat preferences in a suite of seabirds during the nonbreeding period. Oecologia 160:796–806Google Scholar
  57. Polito M, Lynch H, Naveen R, Emslie S (2011a) Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar Ecol-Prog Ser 421:265–277CrossRefGoogle Scholar
  58. Polito M, Abel S, Tobias C, Emslie S (2011b) Dietary isotopic discrimination in Gentoo Penguin (Pygoscelis papua) feathers. Polar Biol 34:1057–1063CrossRefGoogle Scholar
  59. Pritchard HD, Ligtenberg S, Fricker H, Vaughan DG, van den Broeke M, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505CrossRefPubMedGoogle Scholar
  60. Quetin L, Robin M, Ross M, Fritsen C, Vernet M (2007) Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarct Sci 19:253–266CrossRefGoogle Scholar
  61. Quillfeldt P, McGill R, Furness R (2005) Diet and foraging areas of Southern Ocean seabirds and their prey inferred from stable isotopes: review and case study of Wilson’s storm-petrel. Mar Ecol-Prog Ser 295:295–304CrossRefGoogle Scholar
  62. Quillfeldt P, McGill R, Masello J, Weiss F, Strange I, Brickle P, Furnes W (2008) Stable isotope analysis reveals sexual and environmental variability and individual consistency in foraging of Thin-billed prions. Mar Ecol-Prog Ser 373:137–148CrossRefGoogle Scholar
  63. Quillfeldt P, Masello J, McGill R, Adams M, Furness R (2010) Moving polewards in winter: a recent change in the migratory strategy of a pelagic seabird? Front Zool 7:1–11CrossRefGoogle Scholar
  64. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Wien, Österreich.
  65. Reid K, Croxall JP (2001) Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. P Roy Soc Lond B Bio 268:377–384CrossRefGoogle Scholar
  66. Rignot E, Bamber J, Van Den Broeke M, Davis C, Li Y, Van De Berg W, Van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nat Geosci 1:106–110CrossRefGoogle Scholar
  67. Rombolá E, Marschoff E, Coria N (2003) Comparative study of the effects of the late breaking of pack ice on Chinstrap and Adélia Penguin’s diet and reproductive success at Laurie Island, South Orkneys Island, Antarctica. Polar Biol 26:41–48Google Scholar
  68. Sander M, Coelho Balbão T, Schneider Costa E, dos Santos C, Petry M (2007) Decline of the breeding population of Pygoscelis antarctica and Pygoscelis adeliae on Penguin Island, South Shetland, Antarctica. Polar Biol 30:651–654CrossRefGoogle Scholar
  69. Schmidt K, Atkinson A, Stübing D, McClelland J, Montoya J, Voss M (2003) Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnol Oceanogr 48:277–289CrossRefGoogle Scholar
  70. Schmidt K, Atkinson A, Petzke K, Voss M, Pond D (2006) Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes. Limnol Oceanogr 51:2409–2427CrossRefGoogle Scholar
  71. Smetacek V (2008) Are declining Antarctic krill stocks as result of global warming or of the decimation of the whales? In: Duarte CM (ed) Impacts of global warming on polar ecosystems. Fundación BBVA, España, pp 45–83Google Scholar
  72. Smith R, Ainley D, Baker K, Domack E, Emslie S, Fraser B, Kennet J, Leventer A, Mosley-Thompson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to climate change. Bioscience 49:393–404CrossRefGoogle Scholar
  73. Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457:459–463CrossRefPubMedGoogle Scholar
  74. Tanton JL, Reid K, Croxall JP, Trathan PN (2004) Winter distribution and behaviour of Gentoo Penguins Pygoscelis papua at South Georgia. Polar Biol 27:299–303CrossRefGoogle Scholar
  75. Tierney M, Southwell C, Emmerson L, Hindell M (2008) Evaluating and using stable-isotope analysis to infer diet composition and foraging ecology of Adélie Penguins Pygoscelis adeliae. Mar Ecol-Prog Ser 355:297–307CrossRefGoogle Scholar
  76. Trivelpiece WZ, Trivelpiece SG, Volkman NJ (1987) Ecological segregation of Adélie, Gentoo, and Chinstrap Penguins at King George Island, Antarctica. Ecology 68:351–361CrossRefGoogle Scholar
  77. Trivelpiece WZ, Buckelew S, Reiss C, Trivelpiece SG (2007) The winter distribution of Chinstrap Penguins from two breeding sites in the South Shetland Islands of Antarctica. Polar Biol 30:1231–1237CrossRefGoogle Scholar
  78. Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. P Natl Acad Sci USA 108:7625–7628CrossRefGoogle Scholar
  79. Vander Zanden M, Cabana G, Rasmussen J (1997) Comparing the trophic position of littoral fish estimated using stable nitrogen isotopes and dietary data. Can J Fish Aquat Sci 54:1142–1158CrossRefGoogle Scholar
  80. Volkman N, Presler P, Trivelpiece W (1980) Diets of pygoscelid penguins at King George Island, Antarctica. Condor 82:373–378CrossRefGoogle Scholar
  81. Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Res 34:829–841CrossRefGoogle Scholar
  82. Weatherly JW, Walsh JE, Zwally HJ (1991) Antarctic sea ice variations and seasonal air-temperature relationships. J Geophys Res-Oceans 96:15119–15130CrossRefGoogle Scholar
  83. Williams TD (1995) The penguins: Spheniscidae. Oxford University Press, New YorkGoogle Scholar
  84. Wilson R, Puetz K, Bost C, Culik B, Bannasch R, Reins T, Adelung D (1993) Diel dive depth in penguins in relation to diel vertical migration of prey: whose dinner by candlelight? Mar Ecol-Prog Ser 94:101–104CrossRefGoogle Scholar
  85. Wilson R, Alvarrez B, Latorre L, Adelung D, Culik B, Bannasch R (1998) The movements of Gentoo Penguins (Pygoscelis papua) from Ardley Island, Antarctica. Polar Biol 19:407–413CrossRefGoogle Scholar
  86. Woehler EJ, Croxall JP (1997) The status and trends of Antarctic and sub-Antarctic seabirds. Mar Ornithol 25:43–66Google Scholar
  87. Yuan X, Martinson D (2000) Antarctic sea-ice extent variability and its global connectivity. J Climate 13:1697–1717CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pablo Negrete
    • 1
  • Michel Sallaberry
    • 1
  • Gonzalo Barceló
    • 1
  • Karin Maldonado
    • 1
  • Franco Perona
    • 1
  • Rona A. R. McGill
    • 3
  • Petra Quillfeldt
    • 2
  • Pablo Sabat
    • 1
    • 4
    Email author
  1. 1.Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Department of Animal Ecology and BiodiversityJustus Liebig University GiessenGiessenGermany
  3. 3.Scottish Universities Environmental Research CentreEast Kilbride, GlasgowUK
  4. 4.Departamento de Ecología, Facultad de Ciencias Biológicas, Center of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations