Polar Biology

, Volume 40, Issue 4, pp 947–953 | Cite as

Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida)

  • Lorena M. Herrera
  • César X. García-Laviña
  • Juan J. Marizcurrena
  • Odile Volonterio
  • Rodrigo Ponce de León
  • Susana Castro-SowinskiEmail author
Short Note


The oligochaete Grania sp. is a common inhabitant of Artigas Beach at Maxwell Bay (King George Island, South Shetland Islands, Maritime Antarctica) that proliferate during the summer season and feed on debris of red and brown algae. This investigation was undertaken to test the hypothesis that Grania sp. has an enzyme-producing microbiota that may facilitate the worm’s nutrient uptake by processing or metabolizing macroalgae compounds. A culture-based approach was used to investigate the occurrence of microorganisms able to degrade proteins, lipids and polysaccharides. Thirty-four hydrolytic enzyme-producing microorganisms associated with these worms, including bacteria and yeasts, were isolated and identified by sequencing a partial fragment of the 16S and 26S rDNA genes, respectively. These microorganisms have the ability to produce extracellular proteases, esterases, amylases, cellulases and agarases. The microbial genera found during this work (Flavobacterium, Pseudomonas, Salinibacterium, Psychrobacter, Cystobasidium and Rhodotorula) have been previously described in association with red and brown Antarctic algae. Our results suggest that this microbiome has a digestive capability that may assist Grania sp. in metabolizing nutrients from algae, leading us to consider the possibility of a mutualistic relationship between them. The association between the worm Grania sp. and a cold-active hydrolyzing microbiota may contribute to the macroalgae decomposition and nutrient recycling in the Antarctic ecosystem.


Microbiome Cold-adapted Symbiosis Worm 



This work was partially supported by PEDECIBA (Programa de Desarrollo de las Ciencias Básicas) and ANII (Agencia Nacional de Investigación e Innovación) (FSE_1_2104_1_102649). The work of LMH and JJM was supported by ANII. The authors thank the Uruguayan Antarctic Institute for the logistic support during the stay in the Artigas Base. We also thank Vivian Irving and Nicolás Boullosa for their assistance in collecting worms and isolating microorganisms. S. Castro-Sowinski is a member of the National Research System (SNI, Sistema Nacional de Investigadores).


  1. Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringo E (2012) Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquacult 326–329:1–8. doi: 10.1016/j.aquaculture.2011.10.016 CrossRefGoogle Scholar
  2. Barsanti L, Gualtieri P (2014) Algae. Anatomy, biochemistry, and biotechnology, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  3. Beloqui A, Nechitaylo TY, López-Cortés N, Ghazi A, Guarzzaroni ME, Polaina J, Strittmatter AW, Reva O, Waliczek A, Yakimov MM, Golyshina OV, Ferrer M, Golyshin PN (2010) Diversity of glycosyl hydrolases from cellulose-depleting communities enriched from casts of two earthworm species. Appl Environ Microbiol 76:5934–5946. doi: 10.1128/AEM.00902-10 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bick A, Arlt G (2013) Description of intertidal macro- and meiobenthic assemblages in Maxwell Bay, King George Island, South Shetland Islands, Southern ocean. Polar Biol 36:673–689. doi: 10.1007/s00300-013-1293-9 CrossRefGoogle Scholar
  5. Boundy-Mills KL (2014) Methods for the isolation and investigation of the diversity of cold-adapted yeasts and their ex situ preservation in worldwide collections. In: Buzzini P, Margesin R (eds) cold-adapted yeast. Springer, Berlin, pp 23–45CrossRefGoogle Scholar
  6. Chong CW, Goh YS, Convey P, Pearce D, Ping Tang IK (2013) Spatial pattern in Antarctica; what can we learn from Antarctic bacterial isolates? Extremophiles 17:733–745. doi: 10.1007/s00792-013-0555-3 CrossRefPubMedGoogle Scholar
  7. Coates KA (1984) Specific criteria in Grania (Oligochaeta, Enchytraeidae). Hydrobiologia 115:45–50CrossRefGoogle Scholar
  8. Coleman DC, Wall DH (2007) Fauna: The engine for microbial activity and transport. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic Press, Burlington, pp 163–191CrossRefGoogle Scholar
  9. De Wit P (2010) Systematics of Grania (Clitellata: Enchytraeidae), an interstitial annelid taxon. Doctoral thesis. University of Gothenburg, GothenburgGoogle Scholar
  10. Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109:11002–11007. doi: 10.1073/pnas.1202970109 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL, Junior PAS, Romanha AJ, Carvalho AGO, Gil LHVG, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Fungal Microbiol 67:775–787. doi: 10.1007/s00248-014-0374-9 Google Scholar
  12. Ganter PF (2006) Yeast and Invertebrate Associations. In: Rosa CA, Peter G (eds) The yeast handbook—biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 303–370CrossRefGoogle Scholar
  13. Giere O (1975) Population structure, food relations and ecological role of marine oligochaetes. With special reference to meiobenthic species. Mar Biol 31:139–156CrossRefGoogle Scholar
  14. Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta. Bot Mar 52:509–534CrossRefGoogle Scholar
  15. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi: 10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  16. Laich F, Vaca I, Chavez R (2013) Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment. Int J Syst Evol Microbiol 63:3884–3891. doi: 10.1099/ijs.0.052753-0 CrossRefPubMedGoogle Scholar
  17. Lamb IM, Zimmermann MH (1977) Benthic marine algae of the Antarctic Peninsula. A preliminary guide to the commer benthic marine algae of the Antarctic Peninsula and adjacent islands. Biol Antarct Seas 5(23):130–227Google Scholar
  18. Lazado CC, Caipang CMA, Kiron V (2012) Enzymes from the gut bacteria of Atlantic cod, Gadus morhua and their influence on intestinal enzyme activity. Aquacult Nutr 18:423–431. doi: 10.1111/j.1365-2095.2011.00928.x CrossRefGoogle Scholar
  19. Leiva S, Alvarado P, Huang Y, Wang J, Garrido I (2015) Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica. FEMS Microbiol Lett. doi: 10.1093/femsle/fnv206 PubMedGoogle Scholar
  20. Locke JM (1998) Systernatics and biology of Grania (Annelida, Clitellata, Enchytraeidae) of the Bermuda Islands. Master thesis, University of Toronto, TorontoGoogle Scholar
  21. Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calviño A, Rivas F, Batista S (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256. doi: 10.1007/s11274-012-1032-3 CrossRefPubMedGoogle Scholar
  22. Loque CP, Medeiros AO, Pellizari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648. doi: 10.1007/s00300-009-0740-0 CrossRefGoogle Scholar
  23. Martinez-Rosales C, Castro-Sowinski S (2011) Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res 30:7123. doi: 10.3402/polar.v30i0.7123 CrossRefGoogle Scholar
  24. Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N, Nakagawa T, Nakagawa J (2010) Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 60:344–348. doi: 10.1099/ijs.0.009365-0 CrossRefPubMedGoogle Scholar
  25. Murakami T, Segawa T, Bodington D, Dial R, Takeuchi N, Kohshima S, Hongoh Y (2015) Census of bacterial microbiota associated with the glacier ice worm Mesenchytraeus solifugus. FEMS Microb Ecol. doi: 10.1093/femsec/fiv003 Google Scholar
  26. Newton ILG, Sheehan KB, Lee FJ, Horton MA, Hicks RD (2013) Invertebrate systems for hypothesis-driven microbiome research Microb Sc Med 1:1–9. doi: 10.2478/micsm-2013-0001 Google Scholar
  27. Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) (2014) Biofuel from algae. Elsevier, San DiegoGoogle Scholar
  28. Pereira L, Neto JM (eds) (2015) Marine algae—biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press, Boca RatonGoogle Scholar
  29. Prantoni AL, De Wit P, Erséus C (2016) First reports of Grania (Clitellata: Enchytraeidae) from Africa and South America: molecular phylogeny and descriptions of nine new species. Zool J Linn Soc 176:485–510. doi: 10.1111/zoj.12333 CrossRefGoogle Scholar
  30. Quartino ML, Boraso de Zaixso ML (2008) Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Polar Biol 31:281–294. doi: 10.1007/s00300-007-0356-1 CrossRefGoogle Scholar
  31. Ramírez ME (2010) Flora marina bentónica de la región austral de Sudamérica y la Antártica. An Inst Patag (Chile) 38:57–71Google Scholar
  32. Rojan JP, Anishab GS, Madhavan Nampoothiric K, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193. doi: 10.1016/j.biortech.2010.06.139 CrossRefGoogle Scholar
  33. Rota E, Erséus C (1996) Six new species of Grania (Oligochaeta, Enchytraeidae) from the Ross Sea, Antarctica. Antarct Sci 2:169–183Google Scholar
  34. Rühland C (2010) Characterization of bacterial endo- and ectosymbionts of oligochaete worms from marine sediments: phylogeny and metabolic potential. Doctoral thesis, Max-Planck-Institut für Marine Mikrobiologie and University of Bremen, BremenGoogle Scholar
  35. Schimak MP, Kleiner M, Wetzel S, Liebeke M, Dubilier N, Fuchs BM (2016) MiL-FISH: multilabeled oligonucleotides for fluorescence in situ hybridization improve visualization of bacterial cells. Appl Environ Microbiol 82:62–70. doi: 10.1128/AEM.02776-15 CrossRefGoogle Scholar
  36. Singh P, Singh SM, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Alesund, Arctic. Cryobiology 68:122–128. doi: 10.1016/j.cryobiol.2014.01.006 CrossRefPubMedGoogle Scholar
  37. Tropeano M, Vázquez S, Coria S, Turjanski A, Cicero D, Bercovich A, Mac Cormack W (2013) Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic. Pol Polar Res 34:253–267. doi: 10.2478/popore-2013-0014 Google Scholar
  38. Turchetti B, Burzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83. doi: 10.1111/j.1574-6941.2007.00409.x CrossRefPubMedGoogle Scholar
  39. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Londres, pp 315–322Google Scholar
  40. Wüst P, Horn M, Drake H (2011) Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. ISME J 5:92–106. doi: 10.1038/ismej.2010.99 CrossRefPubMedGoogle Scholar
  41. Yurkov AM, Kachalkin AV, Daniel HM, Groenewald M, Libkind D, de Gracia V, Zalar P, Gouliamova DE, Boekhout T, Begerow D (2015) Two yeast species Cystobasidium psychroaquaticum f.a. sp. nov. and Cystobasidium rietchieii f.a. sp. nov. isolated from natural environments, and the transfer of Rhodotorula minuta clade members to the genus Cystobasidium. Antoine van Leeuwenhoek 107:173–185. doi: 10.1007/s10482-014-0315-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lorena M. Herrera
    • 1
  • César X. García-Laviña
    • 1
  • Juan J. Marizcurrena
    • 1
  • Odile Volonterio
    • 2
  • Rodrigo Ponce de León
    • 2
  • Susana Castro-Sowinski
    • 1
    • 3
    Email author
  1. 1.Biochemistry and Molecular Biology, Faculty of SciencesUniversity of the RepublicMontevideoUruguay
  2. 2.Section of Invertebrate Zoology, Faculty of SciencesUniversity of the RepublicMontevideoUruguay
  3. 3.Molecular Microbiology LaboratoryInstitute ‘Clemente Estable’MontevideoUruguay

Personalised recommendations