Polar Biology

, Volume 40, Issue 3, pp 697–711 | Cite as

Climate variability and multi-scale assessment of the krill preyscape near the north Antarctic Peninsula

Original Paper


Antarctic krill (Euphausia superba) densities vary in space and time across multiple scales, with consequences for krill predators, the krill fishery, and management decisions. We use acoustic data collected from 1997 to 2011 around the South Shetland Islands near the northern Antarctic Peninsula to quantify spatiotemporal patterns in krill biomass, distribution, and patchiness both within and across years. Moreover, we evaluate potential climate drivers of krill biomass and spatial organization through comparison with seasonally lagged climate indices. Krill abundance varied by an order of magnitude throughout the study period, with mean biomass ranging from a high of 171.9 g m−2 in 1997 to a low of 9.4 g m−2 in 2002. We find that across years, krill abundance and variability are correlated with seasonally averaged measures of El Niño-Southern Oscillation at lags of approximately 2–2.5 years, which may correspond to strong reproduction and recruitment events. Krill biomass shows generally weak to moderate spatial autocorrelation and high aggregation, with measures of spatial organization correlated with abundance in some habitats. Within years, there was an overall trend of declining krill abundance and/or detectability and contracted spatial distribution between midsummer and late summer, but this pattern was not consistent across all years. This synthesis provides the background to model krill prey landscapes in order to better understand regional foraging ecology of krill predators and fishery performance.


Euphausia superba Acoustic survey Spatial ecology Climate ENSO 

Supplementary material

300_2016_1994_MOESM1_ESM.pdf (588 kb)
Online Resource 1Nonsignificant relationships between mean biomass density and descriptors of spatial organization in midsummer (PDF 588 kb)
300_2016_1994_MOESM2_ESM.pdf (737 kb)
Online Resource 2Nonsignificant relationships between mean biomass density and descriptors of spatial organization in late summer (PDF 736 kb)


  1. Anscombe FJ (1950) Sampling theory of the negative binomial and logarithmic series distributions. Biometrika 37:358–382. doi:10.2307/2332388 CrossRefPubMedGoogle Scholar
  2. Ashjian CJ, Rosenwaks GA, Wiebe PH, Davis CS, Gallager SM, Copley NJ, Lawson GL, Alatalo P (2004) Distribution of zooplankton on the continental shelf off Marguerite Bay, Antarctic Peninsula, during austral fall and winter, 2001. Deep Sea Res Part II 51:2073–2098. doi:10.1016/j.dsr2.2004.07.025 CrossRefGoogle Scholar
  3. Atkinson A, Siegel V, Pakhomov EA, Rothery P, Loeb V, Ross RM, Quetin LB, Schmidt K, Fretwell P, Murphy EJ, Tarling GA, Fleming AH (2008) Oceanic circumpolar habitats of Antarctic krill. Mar Ecol Prog Ser 362:1–23. doi:10.3354/meps07498 CrossRefGoogle Scholar
  4. Bivand R, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63:1–36. doi:10.18637/jss.v063.i18 Google Scholar
  5. Boyd I, Murray A (2001) Monitoring a marine ecosystem using responses of upper trophic level predators. J Anim Ecol 70:747–760. doi:10.1046/j.0021-8790.2001.00534.x CrossRefGoogle Scholar
  6. Brierley AS, Demer DA, Watkins JL, Hewitt RP (1999) Concordance of interannual fluctuations in acoustically estimated densities of Antarctic krill around South Georgia and Elephant Island: biological evidence of same-year teleconnections across the Scotia Sea. Mar Biol 134:675–681. doi:10.1007/s002270050583 CrossRefGoogle Scholar
  7. Cresswell K, Wiedenmann J, Mangel M (2008) Can macaroni penguins keep up with climate-and fishing-induced changes in krill? Polar Biol 31:641–649. doi:10.1007/s00300-007-0401-0 CrossRefGoogle Scholar
  8. Croll D, Tershy B (1998) Penguins, fur seals, and fishing: prey requirements and potential competition in the South Shetland Islands, Antarctica. Polar Biol 19:365–374. doi:10.1007/s003000050261 CrossRefGoogle Scholar
  9. Croxall J, Reid K, Prince P (1999) Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar Ecol Prog Ser 177:115–131. doi:10.3354/meps177103 CrossRefGoogle Scholar
  10. Demer DA, Conti SG (2005) New target-strength model indicates more krill in the Southern Ocean. ICES J Mar Sci 62:25–32. doi:10.1016/j.icesjms.2004.07.027 CrossRefGoogle Scholar
  11. Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecol Biogeogr 12:53–64. doi:10.1046/j.1466-822X.2003.00322.x CrossRefGoogle Scholar
  12. Ducklow HW, Fraser WR, Meredith MP, Stammerjohn SE, Doney SC, Martinson DG, Sailley SF, Schofield OM, Steinberg DK, Venables HJ (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203. doi:10.5670/oceanog.2013.62 CrossRefGoogle Scholar
  13. Fielding S, Watkins JL, Trathan PN, Enderlein P, Waluda CM, Stowasser G, Tarling GA, Murphy EJ (2014) Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J Mar Sci 71:2578–2588. doi:10.1093/icesjms/fsu104 CrossRefGoogle Scholar
  14. Flores H, Atkinson A, Kawaguchi S, Krafft B, Milinevsky G, Nicol S, Reiss C, Tarling G, Werner R, Bravo Rebolledo E (2012) Impact of climate change on Antarctic krill. Mar Ecol Prog Ser 458:1–19. doi:10.3354/meps09831 CrossRefGoogle Scholar
  15. Forcada J, Trathan PN, Reid K, Murphy EJ (2005) The effects of global climate variability in pup production of Antarctic fur seals. Ecology 86:2408–2417. doi:10.1890/04-1153 CrossRefGoogle Scholar
  16. Gutt J, Siegel V (1994) Benthopelagic aggregations of krill (Euphausia superba) on the deeper shelf of the Weddell Sea (Antarctic). Deep Sea Res Part I 41:169–178. doi:10.1016/0967-0637(94)90031-0 CrossRefGoogle Scholar
  17. Hewitt R, Demer D, Emery J (2003) An 8-year cycle in krill biomass density inferred from acoustic surveys conducted in the vicinity of the South Shetland Islands during the austral summers of 1991–1992 through 2001–2002. Aquat Living Resour 16:205–214. doi:10.1016/S0990-7440(03)00019-6 CrossRefGoogle Scholar
  18. Hewitt R, Watters G, Trathan P, Croxall J, Goebel M, Ramm D, Reid K, Trivelpiece W, Watkins J (2004) Options for allocating the precautionary catch limit of krill among small-scale management units in the Scotia Sea. CCAMLR Sci 11:81–97Google Scholar
  19. Hijmans RJ (2014) Raster: geographic data analysis and modeling. R package version 2.4-18. https://CRAN.R-project.org/package=raster
  20. Jones CD, Ramm DC (2004) The commercial harvest of krill in the southwest Atlantic before and during the CCAMLR 2000 Survey. Deep Sea Res Part II 51:1421–1434. doi:10.1016/j.dsr2.2004.06.009 CrossRefGoogle Scholar
  21. Kinzey D, Watters GM, Reiss CS (2015) Selectivity and two biomass measures in an age-based assessment of Antarctic krill (Euphausia superba). Fish Res 168:72–84. doi:10.1016/j.fishres.2015.03.023 CrossRefGoogle Scholar
  22. Lascara CM, Hofmann EE, Ross RM, Quetin LB (1999) Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep Sea Res Part I 46:951–984. doi:10.1016/S0967-0637(98)00099-5 CrossRefGoogle Scholar
  23. Lawson GL, Wiebe PH, Ashjian CJ, Gallager SM, Davis CS, Warren JD (2004) Acoustically-inferred zooplankton distribution in relation to hydrography west of the Antarctic Peninsula. Deep Sea Res Part II 51:2041–2072. doi:10.1016/j.dsr2.2004.07.022 CrossRefGoogle Scholar
  24. Loeb VJ, Santora JA (2015) Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog Oceanogr 134:93–122. doi:10.1016/j.pocean.2015.01.002 CrossRefGoogle Scholar
  25. Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900. doi:10.1038/43174 CrossRefGoogle Scholar
  26. Loeb VJ, Hofmann EE, Klinck JM, Holm-Hansen O, White WB (2009) ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Antarct Sci 21:135–148. doi:10.1017/S0954102008001636 CrossRefGoogle Scholar
  27. Mangel M (2006) The theoretical biologist’s toolbox. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Mangel M, Smith PE (1990) Presence-absence sampling for fisheries management. Can J Fish Aquat Sci 47:1875–1887. doi:10.1139/f90-212 CrossRefGoogle Scholar
  29. Mangel M, Switzer P (1998) A model at the level of the foraging trip for the indirect effects of krill (Euphausia superba) fisheries on krill predators. Ecol Model 105:235–256. doi:10.1016/j.pocean.2015.01.002 CrossRefGoogle Scholar
  30. Miller D, Hampton I (1989) Krill aggregation characteristics: spatial distribution patterns from hydroacoustic observations. Polar Biol 10:125–134. doi:10.1007/BF00239157 CrossRefGoogle Scholar
  31. Moran PA (1950) Notes on continuous stochastic phenomena. Biometrika. doi:10.2307/2332142 Google Scholar
  32. Murphy E, Morris D, Watkins J, Priddle J (1988) Scales of interaction between Antarctic krill and the environment. In: Sahrhage D (ed) Antarctic Ocean and resources variability. Springer, Berlin, pp 120–130CrossRefGoogle Scholar
  33. Murphy E, Thorpe S, Watkins J, Hewitt R (2004) Modeling the krill transport pathways in the Scotia Sea: spatial and environmental connections generating the seasonal distribution of krill. Deep Sea Res Part II 51:1435–1456. doi:10.1016/j.dsr2.2004.06.019 CrossRefGoogle Scholar
  34. Murphy E, Watkins J, Trathan P, Reid K, Meredith M, Thorpe S, Johnston N, Clarke A, Tarling G, Collins M (2007) Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos Trans R Soc B 362:113–148. doi:10.1098/rstb.2006.1957 CrossRefGoogle Scholar
  35. Nicol S (2006) Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56:111–120. doi:10.1641/0006-3568(2006)056[0111:KCASIE]2.0.CO;2 CrossRefGoogle Scholar
  36. Nicol S, Foster J, Kawaguchi S (2012) The fishery for Antarctic krill—recent developments. Fish Fish 13:30–40. doi:10.1111/j.1467-2979.2011.00406.x CrossRefGoogle Scholar
  37. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  38. Quetin L, Ross R (2001) Environmental variability and its impact on the reproductive cycle of Antarctic krill. Integr Comp Biol 41:74. doi:10.1093/icb/41.1.74 Google Scholar
  39. Quetin L, Ross R (2003) Episodic recruitment in Antarctic krill Euphausia superba in the Palmer LTER study region. Mar Ecol Prog Ser 259:185–200. doi:10.3354/meps259185 CrossRefGoogle Scholar
  40. Quetin LB, Ross RM, Fritsen CH, Vernet M (2007) Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarct Sci 19:253–266. doi:10.1017/S0954102007000363 CrossRefGoogle Scholar
  41. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  42. Reid K, Croxall J (2001) Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proc R Soc Lond B Biol Sci 268:377. doi:10.1098/rspb.2000.1371 CrossRefGoogle Scholar
  43. Reiss C, Cossio A, Loeb V, Demer D (2008) Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J Mar Sci. doi:10.1093/icesjms/fsn033 Google Scholar
  44. Richerson K, Watters G, Santora J, Schroeder I, Mangel M (2015) More than passive drifters: a stochastic dynamic model for the movement of Antarctic krill. Mar Ecol Prog Ser 529:35–48. doi:10.3354/meps11324 CrossRefGoogle Scholar
  45. Saba GK, Fraser WR, Saba VS, Iannuzzi RA, Coleman KE, Doney SC, Ducklow HW, Martinson DG, Miles TN, Patterson-Fraser DL (2014) Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat Commun 5:1–8. doi:10.1038/ncomms5318 Google Scholar
  46. Santora JA, Veit RR (2013) Spatio-temporal persistence of top predator hotspots near the Antarctic Peninsula. Mar Ecol Prog Ser 487:287–304. doi:10.3354/meps10350 CrossRefGoogle Scholar
  47. Santora JA, Reiss CS, Cossio AM, Veit RR (2009) Interannual spatial variability of krill (Euphausia superba) influences seabird foraging behavior near Elephant Island, Antarctica. Fish Oceanogr 18:20–35. doi:10.1111/j.1365-2419.2008.00490.x CrossRefGoogle Scholar
  48. Santora JA, Reiss CS, Loeb VJ, Veit RR (2010) Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation. Mar Ecol Prog Ser 405:255–269. doi:10.3354/meps08513 CrossRefGoogle Scholar
  49. Santora JA, Sydeman WJ, Schroeder ID, Reiss CS, Wells BK, Field JC, Cossio AM, Loeb VJ (2012) Krill space: a comparative assessment of mesoscale structuring in polar and temperate marine ecosystems. ICES J Mar Sci 69:1317–1327. doi:10.1093/icesjms/fss048 CrossRefGoogle Scholar
  50. Santora JA, Schroeder ID, Loeb VJ (2014) Spatial assessment of fin whale hotspots and their association with krill within an important Antarctic feeding and fishing ground. Mar Biol 161:2293–2305. doi:10.1007/s00227-014-2506-7 CrossRefGoogle Scholar
  51. SC-CAMLR (2010) Report of the fifth meeting of the subgroup on acoustic survey and analysis methods. SC-CAMLR-XXIXGoogle Scholar
  52. Schmidt K, Atkinson A, Steigenberger S, Fielding S, Lindsay M, Pond DW, Tarling GA, Klevjer TA, Allen CS, Nicol S (2011) Seabed foraging by Antarctic krill: implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnol Oceanogr 56:1411–1428. doi:10.4319/lo.2011.56.4.1411 CrossRefGoogle Scholar
  53. Shelton AO, Kinzey D, Reiss C, Munch S, Watters G, Mangel M (2013) Among-year variation in growth of Antarctic krill Euphausia superba based on length-frequency data. Mar Ecol Prog Ser 481:53–67. doi:10.3354/meps10245 CrossRefGoogle Scholar
  54. Siegel V (1987) Age and growth of Antarctic Euphausiacea (Crustacea) under natural conditions. Mar Biol 96:483–495. doi:10.1007/BF00397966 CrossRefGoogle Scholar
  55. Siegel V (1988) A concept of seasonal variation of krill (Euphausia superba) distribution and abundance west of the Antarctic Peninsula. In: Sahrhage D (ed) Antarctic Ocean and resources variability. Springer, Berlin, pp 219–230CrossRefGoogle Scholar
  56. Siegel V (2005) Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol 29:1–22. doi:10.1007/s00300-005-0058-5 CrossRefGoogle Scholar
  57. Siegel V, Loeb V (1995) Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Mar Ecol Prog Ser 123:45–56. doi:10.3354/meps123045 CrossRefGoogle Scholar
  58. Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368. doi:10.1038/nature04161 CrossRefPubMedGoogle Scholar
  59. Thompson AF, Heywood KJ, Thorpe SE, Renner AH, Trasviña A (2009) Surface circulation at the tip of the Antarctic Peninsula from drifters. J Phys Oceanogr 39:3–26. doi:10.1175/2008JPO3995.1 CrossRefGoogle Scholar
  60. Trathan P, Priddle J, Watkins J, Miller D, Murray A (1993) Spatial variability of Antarctic krill in relation to mesoscale hydrography. Mar Ecol Prog Ser 98:61–71CrossRefGoogle Scholar
  61. Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci USA 108:7625–7628. doi:10.1073/pnas.1016560108 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tynan CT (1998) Ecological importance of the southern boundary of the Antarctic Circumpolar Current. Nature 392:708–710. doi:10.1038/33675 CrossRefGoogle Scholar
  63. Watkins J, Buchholz F, Priddle J, Morris D, Ricketts C (1992) Variation in reproductive status of Antarctic krill swarms; evidence for a size-related sorting mechanisms? Mar Ecol Prog Ser 82:163–174CrossRefGoogle Scholar
  64. White GC, Bennetts RE (1996) Analysis of frequency count data using the negative binomial distribution. Ecology 77:2549–2557. doi:10.2307/2265753 CrossRefGoogle Scholar
  65. Wiedenmann J, Cresswell K, Mangelb M (2009) Connecting recruitment of Antarctic krill and sea ice. Limnol Oceanogr 54:799–811. doi:10.4319/lo.2009.54.3.0799 CrossRefGoogle Scholar
  66. Wiedenmann J, Cresswell KA, Goldbogen J, Potvin J, Mangel M (2011) Exploring the effects of reductions in krill biomass in the Southern Ocean on blue whales using a state-dependent foraging model. Ecol Model 222:3366–3379. doi:10.1016/j.ecolmodel.2011.07.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Center for Stock Assessment Research, Department of Applied Mathematics and StatisticsUniversity of California Santa CruzSanta CruzUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzUSA
  3. 3.Conservation Biology DivisionNorthwest Fisheries Science CenterSeattleUSA
  4. 4.Theoretical Ecology Group, Department of BiologyUniversity of BergenBergenNorway

Personalised recommendations