Polar Biology

, Volume 40, Issue 3, pp 603–613 | Cite as

Abundant deposits of nutrients inside lakebeds of Antarctic oligotrophic lakes

  • Yukiko TanabeEmail author
  • Saori Yasui
  • Takashi Osono
  • Masaki Uchida
  • Sakae Kudoh
  • Masumi Yamamuro
Original Paper


Most freshwater lakes in continental Antarctica are in a paradoxical situation as they are in nutrient-poor conditions despite luxuriant vegetation growth covering the entire lakebed. Although the phytobenthos possibly take up nutrients from inside lakebeds, the amount of nutrients and their utilization by these phytobenthos are unclear. Sediment cores were collected from 17 freshwater lakes in East Antarctica, then dissolved inorganic nitrogen (DIN) and phosphate of the lake waters, and the vertical profiles of the interstitial water in the sediment cores were analyzed. Here we revealed that there are abundant nutrients inside lakebeds surface with 3–220 times the amount of DIN and 2–102 times concentration of phosphate than those in lake water, and the nutrient profile inside the sediment suggested that the phytobenthos can utilize the much nutrients from lakebeds. We also show that nitrogen stable isotope ratios of shallower phytobenthos lying on the small amount of nutrients in a lake are similar to that of terrestrial cyanobacteria possessing N2 fixation ability.


Oligotrophic lakes Sediments Antarctica Polar ecosystems Material cycle Freshwater 



This study was supported by a research grant of a project under the Centre for the Promotion of Integrated Sciences (CPIS) of the Graduate University for Advanced Studies (SOKENDAI) and by JSPS KAKENHI Grant Numbers 26310213 and 21810035. The authors acknowledge the members of the 51st and 53rd Japanese Antarctic Research Expedition for their field support, particularly the summer party leaders, Prof. Y. Motoyoshi and Prof. H. Yamagishi, for their logistic support. We also thank Ms. C. Ôuchida and Prof. J. Kanda of Tokyo University of Marine Science and Technology for assistance and for providing the nutrient analysis facilities and Dr. E. Cooper of University of Tromsø for English proofreading.


  1. Bayliss P, Ellis-Evans JC, Laybourn-Parry J (1997) Temporal patterns of primary production in a large ultraoligotrophic Antarctic freshwater lake. Polar Biol 18:363–370. doi: 10.1007/s003000050201 CrossRefGoogle Scholar
  2. Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130CrossRefGoogle Scholar
  3. Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci USA 105:11039–11040. doi: 10.1073/pnas.0806112105 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Christie P (1987) Nitrogen in two contrasting Antarctic bryophyte communities. J Ecol 75:73–93. doi: 10.2307/2260537 CrossRefGoogle Scholar
  5. Davey A (1983) Effects of abiotic factors on nitrogen fixation by blue-green algae in Antarctica. Polar Biol 2:95–100. doi: 10.1007/BF00303174 CrossRefGoogle Scholar
  6. Davey MC (1993) Carbon and nitrogen dynamics in a small pond in the maritime Antarctic. Hydrobiologia 257:165–175. doi: 10.1007/BF00765009 CrossRefGoogle Scholar
  7. Devol AH (2003) Solution to a marine mystery. Nature 422:575–576. doi: 10.1038/422575a CrossRefPubMedGoogle Scholar
  8. Dore JE, Priscu JC (2001) Phytoplankton phosphorus deficiency and alkaline phosphatase activity in the McMurdo Dry Valley lakes, Antarctica. Limnol Oceanogr 46(6):1331–1346. doi: 10.4319/lo.2001.46.6.1331 CrossRefGoogle Scholar
  9. Fernández-Valiente E, Quesada A, Howard-Williams C, Hawes I (2001) N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microb Ecol 42:338–349. doi: 10.1007/s00248-001-1010-z CrossRefPubMedGoogle Scholar
  10. Hansson L-A (1992) Factors regulating periphytic algal biomass. Limnol Oceanogr 37(2):322–328. doi: 10.4319/lo.1992.37.2.0322 CrossRefGoogle Scholar
  11. Hawes I, Howard-Williams C, Pridmore RD (1993) Environmental control of microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Arch Hydrobiol 127:271–287Google Scholar
  12. Hodgson DA, Vyverman W, Verleyen E, Sabbe K, Leavitt PR, Taton A, Squier AH, Keely BJ (2004) Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquatic Microb Ecol 37:247–263. doi: 10.3354/ame037247 CrossRefGoogle Scholar
  13. Howard-Williams C, Priscu J, Vincent WF (1989) Nitrogen dynamics in two Antarctic streams. Hydrobiologia 172:51–61. doi: 10.1007/BF00031612 CrossRefGoogle Scholar
  14. Howard-Williams C, Pridmore R, Broady P, Vincent WF (1990) Environmental and biological variability in the McMurdo ice Shelf Ecosystem. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin, pp 23–31CrossRefGoogle Scholar
  15. Imura S, Bando T, Saito S, Seto K, Kanda H (1999) Benthic moss pillars in Antarctic lakes. Polar Biol 22:137–140. doi: 10.1007/s003000050401 CrossRefGoogle Scholar
  16. Imura S, Bando T, Seto K, Ohtani S, Kudoh S, Kanda H (2003) Distribution of aquatic mosses in the Sôya Coast region, East Antarctica. Polar Biosci 16:1–10Google Scholar
  17. Kaup E (1994) Annual primary production of phytoplankton in Lake Verkhneye, Schirmacher Oasis, Antarctica. Polar Biol 14:433–439. doi: 10.1007/BF00239045 CrossRefGoogle Scholar
  18. Kaup E (2005) Development of anthropogenic eutrophication in lakes of the Schirmacher Oasis, Antarctica. Proc Int Assoc Theor Appl Limnol 29(2):678–682Google Scholar
  19. Koretsky CM, Haas JR, Miller D, Ndenga NT (2006) Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA). Geochem Trans 7:11. doi: 10.1186/1467-4866-7-11 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kudoh S, Tanabe Y, Matsuzaki M, Imura S (2009) In situ photochemical activity of the phytobenthic communities in two Antarctic lakes. Polar Biol 32(11):1617–1627. doi: 10.1007/s00300-009-0660-z CrossRefGoogle Scholar
  21. Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JA, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895. doi: 10.1038/ismej.2010.185 CrossRefPubMedGoogle Scholar
  22. Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Philos Trans R Soc Lond B 357:863–869. doi: 10.1098/rstb.2002.1075 CrossRefGoogle Scholar
  23. Laybourn-Parry J, Wadham J (2014) Antarctic lakes. Oxford University Press, Oxford. doi: 10.1093/acprof:oso/9780199670499.001.0001 CrossRefGoogle Scholar
  24. Laybourn-Parry J, Quayle WC, Henshaw T, Ruddel A, Marchant HJ (2001) Life on the edge: the plankton and chemistry of Beaver Lake an ultra-oligotrophic epishelf lake, Antarctica. Freshw Biol 46:1205–1217. doi: 10.1046/j.1365-2427.2001.00741.x CrossRefGoogle Scholar
  25. Lennihan R, Chapin DM, Dickson LG (1994) Nitrogen fixation and photosynthesis in high arctic forms of Nostoc commune. Can J Bot 72:940–945. doi: 10.1139/b94-119 CrossRefGoogle Scholar
  26. Liengen T, Olsen RA (1997) Nitrogen fixation by free-living cyanobacteria from different coastal sites in a high Arctic tundra, Spitsbergen. Arct Alp Res 4:470–477CrossRefGoogle Scholar
  27. Line MA (1992) Nitrogen fixation in the sub-Antarctic Macquire Island. Polar Biol 11:601–606. doi: 10.1007/BF00237954 CrossRefGoogle Scholar
  28. Lizotte MP, Sharp TR, Priscu JC (1996) Phytoplankton dynamics in the stratified water column of Lake Bonney Antarctic. 1. Biomass and productivity during the winter–spring transition. Polar Biol 16:155–162. doi: 10.1007/BF02329203 CrossRefGoogle Scholar
  29. Miura H, Maemoku H, Igarashi A, Moriwaki K (1998) Late quaternary raised beach deposits and radiocarbon dates of marine fossils around Lützow-Holm Bay. Special map series of NIPR 6Google Scholar
  30. Müller B, Finger D, Sturm M, Prasuhn V, Haltmeier T, Bossard P, Hoyle C, Wüest A (2007) Present and past bio-available phosphorus budget in the ultra-oligotrophic Lake Brienz. Aquatic Sci 69:227–239. doi: 10.1007/s00027-007-0871-8 CrossRefGoogle Scholar
  31. Nakatsubo T, Ino Y (1987) Nitrogen cycling in an Antarctic ecosystem 2. Estimation of the amount of nitrogen fixation in a moss community on East Ongul Island. Ecol Res 2:31–40. doi: 10.1007/BF02348617 CrossRefGoogle Scholar
  32. Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2(1):11–12. doi: 10.1046/j.1462-2920.2000.00071.x CrossRefPubMedGoogle Scholar
  33. Pandey KD, Kashyap AK, Gupta RK (1992) Nitrogen fixation by cyanobacteria associated with moss communities in Schirmacher Oasis, Antarctica. Israel J Bot 41:187–198Google Scholar
  34. Pearce DA, Galand PE (2008) Microbial biodiversity and biogeography. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers. Oxford University Press, Oxford, pp 213–230CrossRefGoogle Scholar
  35. Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227CrossRefGoogle Scholar
  36. Rautio M, Vincent WF (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw Biol 51:1038–1052CrossRefGoogle Scholar
  37. Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B 275:2793–2802. doi: 10.1098/rspb.2008.0808 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Smith VR, Russell S (1982) Acetylene reduction by bryophite cyanobacteria associations on a Subantarctic island. Polar Biol 1:153–157. doi: 10.1007/BF00287001 CrossRefGoogle Scholar
  39. Sterner RW (2008) On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433–445. doi: 10.1002/iroh.200811068 CrossRefGoogle Scholar
  40. Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117. doi: 10.1146/annurev.micro.58.030603.123605 CrossRefPubMedGoogle Scholar
  41. Takano Y, Tyler JJ, Kojima H, Yokoyama Y, Tanabe Y, Sato T, Ogawa NO, Ohkouchi N, Fukui M (2012) Holocene lake development and glacial-isostatic uplift at Lake Skallen and Lake Oyako; Lützow-Holm Bay; East Antarctica: based on biogeochemical facies and molecular signatures. Appl Geochem 27(12):2546–2559. doi: 10.1016/j.apgeochem.2012.08.009 CrossRefGoogle Scholar
  42. Tanabe Y, Kudoh S (2012) Possible ecological implications of floating microbial assemblages lifted from the lakebed on an Antarctic lake. Ecol Res 27:359–367. doi: 10.1007/s11284-011-0907-3 CrossRefGoogle Scholar
  43. Tanabe Y, Kudoh S, Imura S, Fukuchi M (2008) Phytoplankton blooms under dim and cold conditions in freshwater lakes of East Antarctica. Polar Biol 31:199–208. doi: 10.1007/s00300-007-0347-2 CrossRefGoogle Scholar
  44. Tanabe Y, Ohtani S, Kasamatsu N, Fukuchi M, Kudoh S (2010) Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biol 33(1):85–100. doi: 10.1007/s00300-009-0687-1 CrossRefGoogle Scholar
  45. Tarton A, Wilmotte A, Šmarda J, Elster J, Komárek J (2011) Plectolyngbya hodgsonii: a novel filamentous cyanobacterium from Antarctic lakes. Polar Biol 34(2):181–191. doi: 10.1007/s00300-010-0868-y CrossRefGoogle Scholar
  46. Tewari SD, Pant G (2004) Some moss collections from Dakshin Gangotri, Antarctica. Bryol Times 91:7Google Scholar
  47. Urban N, Dinkel C, Wehrli B (1997) Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis samplers. Aquat Sci 59:1–25. doi: 10.1007/BF02522546 CrossRefGoogle Scholar
  48. Velázquez D, López-Bueno A, de Cárcer DA, de Los Ríos A, Alcamí A, Quesada A (2016) Ecosystem function decays by fungal outbreaks in Antarctic microbial mats. Sci Res 6:22954. doi: 10.1038/srep22954 Google Scholar
  49. Villeneuve V, Vincent WF, Komarek J (2001) Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. In: Elster J, Seckbach J, Vincent WF, Lhotsky O (eds) Algae and extreme environments. Nova Hedwigia Beihefte 123:199–224Google Scholar
  50. Vincent WF (1981) Production strategies in Antarctic inland waters: phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 62(5):1215–1224. doi: 10.2307/1937286 CrossRefGoogle Scholar
  51. Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton B, Potts M (eds) Ecology of the cyanobacteria: their diversity in space and time. Kluwer Academic, Dordrecht, pp 321–340Google Scholar
  52. Vincent WF, Howard-Williams C (1994) Nitrate-rich inland waters of the Ross Ice Shelf region, Antarctica. Antarct Sci 6:339–346. doi: 10.1017/S0954102094000519 CrossRefGoogle Scholar
  53. Vincent WF, Quesada A (2012) Cyanobacteria in high latitude lakes, rivers and seas. In: Whitton BA (ed) Ecology of cyanobacteria II—their diversity in space and time. Springer, Dordrecht, pp 371–3853. doi: 10.1007/978-94-007-3855-3_13 Google Scholar
  54. Vincent WF, Vincent CL (1982) Factors controlling phytoplankton production in Lake Vanda (77S). Can J Fish Aquat Sci 39:1602–1609. doi: 10.1139/f82-216 CrossRefGoogle Scholar
  55. Vincent WF, Hobbie JE, Laybourn-Parry J (2008) Introduction to the limnology of high-latitude lake and river ecosystems. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers. Oxford University Press, Oxford, pp 1–23. doi: 10.1093/acprof:oso/9780199213887.003.0001 CrossRefGoogle Scholar
  56. Wersin P, Höhener P, Giovanoli R, Stumm W (1991) Early diagenetic influences on iron transformations in a freshwater lake sediment. Chem Geol 90:232–252. doi: 10.1016/0009-2541(91)90102-W CrossRefGoogle Scholar
  57. Yamamuro M, Koike I (1998) Concentrations of nitrogen in sandy sediments of a eutrophic estuarine lagoon. Hydrobiologia 386:37–44. doi: 10.1023/A:1003414028040 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yukiko Tanabe
    • 1
    • 2
    Email author
  • Saori Yasui
    • 3
  • Takashi Osono
    • 4
  • Masaki Uchida
    • 1
    • 2
  • Sakae Kudoh
    • 1
    • 2
  • Masumi Yamamuro
    • 5
    • 6
  1. 1.National Institute of Polar ResearchResearch Organization of Information and SystemsTachikawaJapan
  2. 2.Department of Polar ScienceSOKENDAI (The Graduate University for Advanced Studies)TachikawaJapan
  3. 3.Department of Ocean Sciences, Faculty of Marine ScienceTokyo University of Marine Science and TechnologyTokyoJapan
  4. 4.Center for Ecological ResearchKyoto UniversityOtsuJapan
  5. 5.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  6. 6.Institute of Geology and GeoinformationGeological Survey of Japan (GSJ), AISTTsukubaJapan

Personalised recommendations