Advertisement

Polar Biology

, Volume 39, Issue 10, pp 1841–1857 | Cite as

Late winter-to-summer change in ocean acidification state in Kongsfjorden, with implications for calcifying organisms

  • A. FranssonEmail author
  • M. Chierici
  • H. Hop
  • H. S. Findlay
  • S. Kristiansen
  • A. Wold
Original Paper

Abstract

Late winter-to-summer changes (April to July) in ocean acidification state, calcium carbonate (CaCO3) saturation for aragonite (Ω a) and calcite (Ω c) and biogeochemical properties were investigated in 2013 and 2014 in Kongsfjorden, Svalbard. We investigated physical (salinity, temperature) and chemical (carbonate system, nutrient) properties in the water column from the glacier front in the fjord to the west Spitsbergen shelf. The average range of Ω a in the upper 50 m in the fjord in winter was 1.59–1.74 and in summer 1.65–2.66. The lowest Ω a (1.5) was close to the reported critical threshold for aragonite-forming organisms such as the pteropod Limacina helicina. In summer 2013, Ω a, pHT and salinity were generally lower than in 2014 as a result of a larger influence of high-CO2 water from the coastal current and less Atlantic water. The inner fjord was influenced by glacial water in summer which decreased Ω a by 0.7. Biological CO2 consumption based on a winter-to summer decrease in nitrate was larger in 2014 than in 2013, suggesting more primary production in 2014. The influence of freshwater decreased Ω a by the same amount as the biological effect increased Ω a. The seasonal increase in temperature only played a minor role on the increase of Ω a. The biological effect showed more inter-annual variability than the effect of freshwater. Based on this study, we suggest that changes in the inflow of different water masses and freshwater directly influence ocean acidification state, but also indirectly affect the biological drivers of carbonate chemistry in the fjord.

Keywords

Carbonate system Fjord chemistry Glacier–ocean interaction Land–ocean interaction Primary production Svalbard Aragonite Pteropods 

Notes

Acknowledgments

This is a project within the flagship research program “Ocean acidification and ecosystem effects in Northern waters” at the Fram Centre, and MOSJ (Monitoring of Svalbard), and we thank the Ministry of Climate and Environment and the Ministry of Trade, Industry and Fisheries, Norway, for financial support. Data will be stored at the Norwegian Polar Institute data archive and be available within 1 year after publication. Metadata will also be available at RiS portal at www.researchinsvalbard.no within 1 year after publication; until then contact the corresponding author. We gratefully thank the captain and crew on RV Lance for valuable support and assistance and all students or researchers who helped with water sampling. We gratefully thank Malcolm Woodward for the nutrient analyses (April 2014). We are also grateful for the support, boat logistics and safety training at the Norwegian Polar Institute logistics in Ny-Ålesund. We thank Michael Greenacre and three anonymous reviewers for valuable comments for improving the manuscript.

References

  1. Accornero A, Manno C, Esposito F, Gambi MC (2003) The vertical flux of particulate matter in the polynya of Terra Nova Bay, Part II, Biological components. Antarct Sci 15:175–188CrossRefGoogle Scholar
  2. Apollonio S (1973) Glaciers and nutrients in Arctic seas. Science 180:491–493CrossRefPubMedGoogle Scholar
  3. Bauerfeind E, Nöthig E-M, Pauls B, Kraft A, Beszczynska-Möller A (2014) Variability in pteropod sedimentation and corresponding aragonite flux at the Arctic deep-sea long-term observatory HAUSGARTEN in the eastern Fram Strait from 2000 to 2009. J Mar Syst 132:95–105. doi: 10.1016/j.jmarsys.2013.12.006 CrossRefGoogle Scholar
  4. Bednaršek N, Ohman MD (2015) Changes in pteropod distributions and shell dissolution across a frontal system in the California Current System. Mar Ecol Prog Ser 523:93–103. doi: 10.3354/meps11199 CrossRefGoogle Scholar
  5. Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Jones EM, Venables HJ, Ward P, Kuzirian A, Lézé B, Feely RA, Murphy EJ (2012) Extensive dissolution of live pteropods in the Southern Ocean. Nat Geosci. doi: 10.1038/NGEO1635 Google Scholar
  6. Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Feely RA (2014) Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation. PLoS ONE 9(10):e109183. doi: 10.1371/journal.pone.0109183 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bendschneider K, Robinson RI (1952) A new spectrophotometric method for the determination of nitrite in seawater. J Mar Res 2:87–96Google Scholar
  8. Brewer PG, Riley JP (1965) The automatic determination of nitrate in sea water. Deep Sea Res 12:765–772Google Scholar
  9. Chierici M, Fransson A (2009) CaCO3 saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves. Biogeosciences 6:2421–2432CrossRefGoogle Scholar
  10. Chierici M, Fransson A, Lansard B, Miller LA, Mucci A, Shadwick E, Thomas H, Tremblay J-E, Papakyriakou T (2011) The impact of biogeochemical processes and environmental factors on the calcium carbonate saturation state in the Circumpolar Flaw Lead in the Amundsen Gulf, Arctic Ocean. J Geophys Res Oceans 116:C00G09. doi: 10.1029/2011JC007184 CrossRefGoogle Scholar
  11. Chierici M, Skjelvan I, Bellerby R, Norli M, Lunde Fonnes L, Lødemel Hodal H, Børsheim KY, Lauvset KS, Johannessen T, Sørensen K, Yakushev E (2014) Overvåking av havforsuring i norske farvann, Miljødirektoratet, Report TA218-2014Google Scholar
  12. Comeau S, Gorsky G, Jeffree R, Teyssié J-L, Gattuso J-P (2009) Impact of ocean acidification on a key Arctic pelagic mollusk (Limacina helicina). Biogeosciences 6:1877–1882CrossRefGoogle Scholar
  13. Comeau S, Jeffree R, Teyssié J-L, Gattuso J-P (2010) Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS ONE 5:e11362. doi: 10.1371/journal.pone.0011362 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Comeau S, Gattuso J-P, Nisumaa A-M, Orr J (2011) Impact of aragonite saturation state changes on migratory pteropods. Proc R Soc Ser B 279:732–738. doi: 10.1098/rspb.2011.0910 CrossRefGoogle Scholar
  15. Cottier FR, Tverberg V, Inall ME, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res Oceans 110:C12005CrossRefGoogle Scholar
  16. Cottier FR, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607CrossRefGoogle Scholar
  17. Dallmann WK, Ohta Y, Elvevold S, Blomeier D (2002) Bedrock map of Svalbard and Jan Mayen, Norsk Polarinstitutt Temakart 33. Norwegian Polar Institute, TromsøGoogle Scholar
  18. Dalpadado P, Hop H, Rønning J, Pavlov V, Sperfeld E, Buchholz F, Rey A, Wold A (2016) Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biol. doi: 10.1007/s00300-015-1874-x
  19. Dickson AG (1990) Standard potential of the (AgCl(s) + 1/2H2 (g) = Ag(s) + HCl(aq)) cell and the dissociation constant of bisulfate ion in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127CrossRefGoogle Scholar
  20. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743CrossRefGoogle Scholar
  21. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, 191 ppGoogle Scholar
  22. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi: 10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  23. Falk-Petersen S, Sargent JR, Kwasniewski S, Gulliksen B, Millar R-M (2001) Lipids and fatty acids in Clione limacina and Limacina helicina in Svalbard waters and the Arctic Ocean: trophic implications. Polar Biol 24:163–170CrossRefGoogle Scholar
  24. Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett R, Widdicombe S (2011) Comparing the impact of high CO2 on calcium carbonate structures in difference marine organisms. Mar Biol Res 7:565–575CrossRefGoogle Scholar
  25. Fransson A, Chierici M, Miller LA, Carnat G, Thomas H, Shadwick E, Pineault S, Papakyriakou TM (2013) Impact of sea ice processes on the carbonate system and ocean acidification state at the ice-water interface of the Amundsen Gulf, Arctic Ocean. J Geophys Res Oceans 118:1–23. doi: 10.1002/2013JC009164 CrossRefGoogle Scholar
  26. Fransson A, Chierici M, Nomura D, Granskog MA, Kristiansen S, Martma T, Nehrke G (2015) Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years. J Geophys Res Oceans. doi: 10.1002/2014JC010320 Google Scholar
  27. Gannefors C, Böer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falck-Petersen S (2005) The Arctic butterfly Limacina helicina: lipids and life strategy. Mar Biol 147:169–177. doi: 10.1007/s00227-004-1544-y CrossRefGoogle Scholar
  28. Gerland S, Renner A (2007) Sea ice mass balance monitoring in an Arctic fjord. Ann Glaciol 46:435–442CrossRefGoogle Scholar
  29. Gilmer RW, Harbison GR (1991) Diet of Limacina helicina (Gastropoda: Thecosomata) in Arctic waters in midsummer. Mar Ecol Prog Ser 77:125–134CrossRefGoogle Scholar
  30. Grasshoff H (1976) Methods of sea water analysis. Verlag Chemie, BaselGoogle Scholar
  31. Grasshoff K, Kremling K, Ehrhardt M (2009) Methods of seawater analysis, 3rd edn. Wiley, New YorkGoogle Scholar
  32. Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105CrossRefGoogle Scholar
  33. Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M (2012) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients phytoplankton, protozoans and primary production. Polar Biol 35:191–203CrossRefGoogle Scholar
  34. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski C, Eiane S, Mehlum F, Gullriksen B et al (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  35. Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlov O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Progr Oceanogr 71:182–231CrossRefGoogle Scholar
  36. Hunt BPV, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K (2008) Pteropods in southern ocean ecosystems. Prog Oceanogr 78:193–221CrossRefGoogle Scholar
  37. Keck A, Wiktor J, Hapter R, Nilsen R (1999) Plankton assemblages related to physical gradients in an Arctic, glacier-fed fjord in summer. ICES J Mar Sci 56:203–214CrossRefGoogle Scholar
  38. Kirkwood DS (1989) Simultaneous determination of selected nutrients in sea water. Report CM 1989/C:29, Copenhagen: International Council for the Exploration of the SeasGoogle Scholar
  39. Kobayashi HA (1974) Growth cycle and related vertical distribution of the thecosomatous pteropod Spiratella (“Limacina”) helicina in the central Arctic Ocean. Mar Biol 26:295–301. doi: 10.1007/BF00391513 CrossRefGoogle Scholar
  40. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi: 10.3354/meps07802 CrossRefGoogle Scholar
  41. Lischka S, Riebesell U (2012) Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Glob Change Biol 18:3517–3528. doi: 10.1111/geb.12020 CrossRefGoogle Scholar
  42. Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences 8:919–932. doi: 10.5194/bg-919-2011 CrossRefGoogle Scholar
  43. Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471CrossRefGoogle Scholar
  44. Manno C, Tirelli V, Accornero A, Umani SF (2010) Importance of the contribution of Limacina helicina faecal pellets to the carbon pump in Terra Nova Bay (Antarctica). J Plankton Res 32:145–152CrossRefGoogle Scholar
  45. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi: 10.4319/lo.1973.18.6.0897 CrossRefGoogle Scholar
  46. Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures and at one atmosphere pressure. Am J Sci 283:781–799CrossRefGoogle Scholar
  47. Olsen A, Omar AM, Bellerby RGJ, Johannessen T, Ninnemann U, Brown KR, Olsson KA, Olafsson J, Nondal G, Kivimäe C, Kringstad S, Neill C, Olafsdottir S (2006) Magnitude and origin of the anthropogenic CO2 increase and 13C Suess effect in the Nordic seas since 1981. Global Biogeochem Cycles 20:GB3027. doi: 10.1029/2005GB002669 CrossRefGoogle Scholar
  48. Omar A, Johannessen T, Bellerby R, Olsen A, Anderson LG, Kivimäe C (2005) Sea-ice and brine formation in Storfjorden: implications for the Arctic wintertime air-sea CO2 flux. In: Drange H (ed) The Nordic seas - an integrated perspective. American Geophysical Union (AGU), pp 177–188Google Scholar
  49. Pierrot D, Lewis E, Wallace DWR (2006) MS excel program developed for CO2 system calculations, ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak RidgeGoogle Scholar
  50. Piquet AM-T, van de Poll WH, Visser RJW, Wiencke C, Bolhuis H, Buma AGJ (2014) Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences 11:2263–2279. doi: 10.5194/bg-11-2263-2014 CrossRefGoogle Scholar
  51. Piwosz K, Walkusz W, Hapter R, Wieczorek P, Hop H, Wiktor J (2009) Comparison of productivity and phytoplankton in warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol 32:549–559CrossRefGoogle Scholar
  52. Redfield A, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea water. In: Hill NM (ed) The Sea, vol 2. Interscience, New York, pp 26–77Google Scholar
  53. Riebesell U, Gattuso J-P, Thingstad TF, Middelburg JJ (2013) Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study. Biogeosciences 10:5619–5626. doi: 10.5194/bg-10-5619-2013 CrossRefGoogle Scholar
  54. Ries JB (2012) Oceanography: a sea butterfly flaps its wings. Nat Geosci 5:845–846CrossRefGoogle Scholar
  55. Rysgaard S, Glud RN, Sejr MK, Bendtsen J, Christensen PB (2007) Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas. J Geophys Res 112:C03016. doi: 10.1029/2006JC003572 CrossRefGoogle Scholar
  56. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371. doi: 10.1126/science.1097403 CrossRefPubMedGoogle Scholar
  57. Sejr MK, Krause-Jensen D, Rysgaard S, Sørensen LL, Christensen PB, Glud RN (2011) Air–sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice. Tellus 63B:815–822CrossRefGoogle Scholar
  58. Shadwick EH, Thomas H, Chierici M, Fransson A et al (2011) Seasonal variability of the inorganic carbon system in the Amundsen Gulf region of the southeastern Beaufort Sea. Limnol Oceanogr 56:303–322. doi: 10.4319/lo.2011.56.1.0303 CrossRefGoogle Scholar
  59. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V et al (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  60. Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in an ubiquitous planktonic copepod. Glob Change Biol 21:2261–2271CrossRefGoogle Scholar
  61. Tréguer P, Legendre L, Rivkin RT, Raueneau O, Dittert N (2013) Water column biogeochemistry below the euphotic zone. In: Fasham MJR (ed) Ocean biogeochemistry: the role of the ocean carbon cycle in global change, global change—the IGBP series (closed), pp 145–156. doi: 10.1007/978-3-642-55844-3.7.2003
  62. Walczowski W (2013) Frontal structures in the West Spitsbergen Current margins. Ocean Sci 9:957–975. doi: 10.5194/os-9-957-2013 CrossRefGoogle Scholar
  63. Woodward EMS, Rees AP (2001) Nutrient distributions in an anticyclonic eddy in the northeast Atlantic Ocean, with reference to nanomolar ammonium concentrations. Deep Sea Res Part II 48:775–793CrossRefGoogle Scholar
  64. Yamamoto-Kawai M, McLaughlin FA, Carmack ECS, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–1100. doi: 10.1126/science.1174190 CrossRefPubMedGoogle Scholar
  65. Zhang J-Z, Chi J (2002) Automated analysis of nanomolar concentrations of phosphate in natural waters with liquid waveguide. Environ Sci Techol 36:1048–1053CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Fransson
    • 1
    Email author
  • M. Chierici
    • 2
  • H. Hop
    • 1
    • 3
  • H. S. Findlay
    • 4
  • S. Kristiansen
    • 3
  • A. Wold
    • 1
  1. 1.Norwegian Polar InstituteFram CentreTromsøNorway
  2. 2.Institute of Marine ResearchTromsøNorway
  3. 3.Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
  4. 4.Plymouth Marine LaboratoryPlymouthUK

Personalised recommendations