Advertisement

Polar Biology

, Volume 40, Issue 2, pp 247–261 | Cite as

Community structure of under-ice fauna in relation to winter sea-ice habitat properties from the Weddell Sea

  • Carmen David
  • Fokje L. Schaafsma
  • Jan Andries van Franeker
  • Benjamin Lange
  • Angelika Brandt
  • Hauke Flores
Original Paper

Abstract

Climate change-related alterations of Antarctic sea-ice habitats will significantly impact the interaction of ice-associated organisms with the environment, with repercussions on ecosystem functioning. The nature of this interaction is poorly understood, particularly during the critical period of winter–spring transition. To investigate the role of sea-ice and underlying water-column properties in structuring under-ice communities during late winter/early spring, we used a Surface and Under Ice Trawl to sample animals and environmental properties in the upper 2-m layer under the sea ice in the northern Weddell Sea from August to October 2013. The area of investigation was largely homogeneous in terms of hydrography and sea-ice coverage. We hypothesised that this apparent homogeneity in the physical regime was mirrored in the structure of the under-ice community. The under-ice community was numerically dominated by the copepods Stephos longipes, Ctenocalanus spp. and Calanus propinquus (altogether 67 %), and furcilia larvae of Antarctic krill Euphausia superba (30 %). In spite of the apparent homogeneity of the environment, abundance and biomass distributions at our sampling stations indicated the presence of three community types, following a geographical gradient in the investigation area: (1) high biomass, krill-dominated in the west, (2) high abundance, copepod-dominated in the east, and (3) low abundance, low biomass at the ice edge. Combined analysis with environmental data indicated that under-ice community structure was correlated with sea-ice coverage, chlorophyll a concentration, and bottom depth. The heterogeneity of the Antarctic under-ice community was probably also driven by other factors, such as advection, sea-ice drift, and seasonal progression. The response of under-ice communities to changing sea-ice habitats may thus considerably vary seasonally and regionally.

Keywords

Southern Ocean Sea ice Antarctic krill Euphausia superba Stephos longipes Ctenocalanus Zooplankton Biomass Diversity 

Notes

Acknowledgments

We thank Captain Stephan Schwarze and the crew of RV Polarstern expedition ANT XXIX/7 for their excellent support with work at sea. We thank Michiel van Dorssen for operational and technical support with the Surface and Under-Ice Trawl (SUIT). SUIT was developed by IMARES with support from the Netherlands Ministry of EZ (Project WOT-04-009-036) and the Netherlands Polar Program (Projects ALW 851.20.011 and 866.13.009). This study is part of the Helmholtz Association Young Investigators Group Iceflux: Ice-ecosystem carbon flux in polar oceans (VH-NG-800). We thank Dr. Astrid Cornils for help with copepod species identification. We thank Dr. Christine Klaas for providing chlorophyll a measurements of water samples used for calibration.

Supplementary material

300_2016_1948_MOESM1_ESM.pdf (202 kb)
Supplementary material 1 (PDF 201 kb)
300_2016_1948_MOESM2_ESM.pdf (413 kb)
Supplementary material 2 (PDF 413 kb)
300_2016_1948_MOESM3_ESM.pdf (198 kb)
Supplementary material 3 (PDF 198 kb)

References

  1. Ainley DG, Dugger KM, Toniolo V, Gaffney I (2007) Cetacean occurrence patterns in the Amundsen and southern Bellingshausen Sea sector, Southern Ocean. Mar Mamm Sci 23:287–305CrossRefGoogle Scholar
  2. Ainley D, Jongsomjit D, Ballard G, Thiele D, Fraser W, Tynan C (2012) Modeling the relationship of Antarctic minke whales to major ocean boundaries. Polar Biol 35:281–290. doi: 10.1007/s00300-011-1075-1 CrossRefGoogle Scholar
  3. Arrigo KR, Worthen DL, Lizotte MP, Dixon P, Dieckmann G (1997) Primary production in antarctic Sea Ice. Science 276:394–397. doi: 10.1126/science.276.5311.394 CrossRefPubMedGoogle Scholar
  4. Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res-Oceans. doi: 10.1029/2007jc004551 Google Scholar
  5. Atkinson A, Meyer B, Bathmann U, Stübing D, Hagen W, Schmidt K (2002) Feeding and energy budget of Antarctic krill Euphausia superba at the onset of winter-II Juveniles and adults. Limnol Oceanogr 47:953–966CrossRefGoogle Scholar
  6. Atkinson A et al (2008) Oceanic circumpolar habitats of antarctic krill. Mar Ecol Prog Ser 362:1–23CrossRefGoogle Scholar
  7. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  8. Brierley AS, Thomas DN (2002) Ecology of Southern Ocean pack ice. Adv Marine Biol 43:171–276. doi: 10.1016/S0065-2881(02)43005-2 CrossRefGoogle Scholar
  9. Clarke K, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205CrossRefGoogle Scholar
  10. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E Limited, PlymouthGoogle Scholar
  11. Daly KL (1990) Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone. Limnol Oceanogr 35:1564–1576CrossRefGoogle Scholar
  12. Daly KL (2004) Overwintering growth and development of larval Euphausia superba: an interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep-Sea Res Pt II 51:2139–2168CrossRefGoogle Scholar
  13. David C, Lange B, Rabe B, Flores H (2015) Community structure of under-ice fauna in the Eurasian central Arctic Ocean in relation to environmental properties of sea ice habitats. Mar Ecol Prog Ser 522:15–32. doi: 10.3354/meps11156 CrossRefGoogle Scholar
  14. De Broyer C, Koubbi P, Griffiths H, Raymond B, Udekem d’Acoz C d’, Van de Putte A, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (2014) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, UKGoogle Scholar
  15. Fisher EC, Kaufmann RS, Smith KL (2004) Variability of epipelagic macrozooplankton/micronekton community structure in the NW Weddell Sea, Antarctica (1995–1996). Mar Biol 144:345–360CrossRefGoogle Scholar
  16. Flores H et al (2011) Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean. Deep-Sea Res Pt II 58:1948–1961CrossRefGoogle Scholar
  17. Flores H et al (2012) The association of Antarctic krill Euphausia superba with the under-ice habitat. PLoS ONE. doi: 10.1371/journal.pone.0031775 Google Scholar
  18. Flores H et al (2014) Seasonal changes in the vertical distribution and community structure of Antarctic macrozooplankton and micronekton. Deep-Sea Res Pt I 84:127–141. doi: 10.1016/j.dsr.2013.11.001 CrossRefGoogle Scholar
  19. Gannefors C et al (2005) The Arctic sea butterfly Limacina helicina: lipids and life strategy. Mar Biol 147:169–177CrossRefGoogle Scholar
  20. Giesecke R, González HE (2012) Distribution and feeding of chaetognaths in the epipelagic zone of the Lazarev Sea (Antarctica) during austral summer. Polar Biol 35:689–703. doi: 10.1007/s00300-011-1114-y CrossRefGoogle Scholar
  21. Gloersen P, Campbell WJ (1991) Recent variations in Arctic and Antarctic sea-ice covers. Nature 352:33–36CrossRefGoogle Scholar
  22. Holland PR, Kwok R (2012) Wind-driven trends in Antarctic sea-ice drift. Nature Geosci 5:872–875. doi: 10.1038/ngeo1627 CrossRefGoogle Scholar
  23. Hopkins T, Torres J (1988) The zooplankton community in the vicinity of the ice edge, western Weddell Sea, March 1986. Polar Biol 9:79–87CrossRefGoogle Scholar
  24. Hopkins T, Torres J (1989) Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep Sea Res Pt I 36:543–560CrossRefGoogle Scholar
  25. Hopkins TL, Lancraft TM, Torres JJ, Donnelly J (1993) Community structure and trophic ecology of zooplankton in the scotia sea marginal ice zone in winter (1988). Deep Sea Res Pt I 40:81–105. doi: 10.1016/0967-0637(93)90054-7 CrossRefGoogle Scholar
  26. Hunt B, Pakhomov E, Hosie G, Siegel V, Ward P, Bernard K (2008) Pteropods in southern Ocean ecosystems. Prog Oceanogr 78:193–221CrossRefGoogle Scholar
  27. Hunt BPV, Pakhomov EA, Siegel V, Strass V, Cisewski B, Bathmann U (2011) The seasonal cycle of the Lazarev Sea macrozooplankton community and a potential shift to top-down trophic control in winter. Deep-Sea Res Pt II 58:1662–1676. doi: 10.1016/j.dsr2.2010.11.016 CrossRefGoogle Scholar
  28. Kiko R, Michels J, Mizdalski E, Schnack-Schiel SB, Werner I (2008) Living conditions, abundance and composition of the metazoan fauna in surface and sub-ice layers in pack ice of the western Weddell Sea during late spring. Deep-Sea Res Pt II 55:1000–1014. doi: 10.1016/j.dsr2.2007.12.012 CrossRefGoogle Scholar
  29. Kohout AL, Williams MJM, Dean SM, Meylan MH (2014) Storm-induced sea-ice breakup and the implications for ice extent. Nature 509:604–607. doi: 10.1038/nature13262 CrossRefPubMedGoogle Scholar
  30. Krell A, Schnack-Schiel SB, Thomas DN, Kattner G, Zipan W, Dieckmann GS (2005) Phytoplankton dynamics in relation to hydrography, nutrients and zooplankton at the onset of sea ice formation in the eastern Weddell Sea (Antarctica). Polar Biol 28:700–713CrossRefGoogle Scholar
  31. Kruse S, Hagen W, Bathmann U (2010) Feeding ecology and energetics of the Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica. Mar Biol 157:2289–2302CrossRefGoogle Scholar
  32. Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129. doi: 10.1007/bf02289694 CrossRefGoogle Scholar
  33. Kurbjeweit F, Gradinger R, Weissenberger J (1993) The life cycle of Stephos longipes-an example for cryopelagic coupling in the Weddell Sea (Antarctica). Mar Ecol Prog Ser 98:255–262CrossRefGoogle Scholar
  34. Lancraft TM, Hopkins TL, Torres JJ, Donnelly J (1991) Oceanic micronektonic/macrozooplanktonic community structure and feeding in ice covered Antarctic waters during the winter (AMERIEZ 1988). Polar Biol 11:157–167CrossRefGoogle Scholar
  35. Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Oxford, UKGoogle Scholar
  36. Lizotte MP (2001) The contributions of Sea Ice Algae to Antarctic marine primary production. Am Zool 41:57–73. doi: 10.1093/icb/41.1.57 Google Scholar
  37. Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900CrossRefGoogle Scholar
  38. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  39. Menshenina LL, Melnikov IA (1995) Under-ice zooplankton of the western Weddell Sea. Proc NIPR Symp Polar Biol 8:126–138Google Scholar
  40. Metz C, Schnack-Schiel S (1995) Observations on carnivorous feeding in Antarctic calanoid copepods. Mar Ecol Prog Ser 129:71–75CrossRefGoogle Scholar
  41. Meyer B (2012) The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol 35:15–37. doi: 10.1007/s00300-011-1120-0 CrossRefGoogle Scholar
  42. Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. In: Prentice IC, van der Maarel E (eds) Theory and models in vegetation science. Springer, Berlin, pp 89–107CrossRefGoogle Scholar
  43. Mizdalski E (1988) Weight and length data of zooplankton in the Weddell Sea in austral spring 1986 (ANT V/3). Berichte zur Polarforschung (Reports on Polar Research) 55Google Scholar
  44. Motoda S (1959) Devices of simple plankton apparatus. Memoirs of the Faculty of Fisheries, Hokkaido University 7:73–94Google Scholar
  45. Nöthig EM, Bathmann U, Jennings JC Jr, Fahrbach E, Gradinger R, Gordon LI, Makarov R (1991) Regional relationships between biological and hydrographical properties in the Weddell Gyre in late austral winter 1989. Mar Chem 35:325–336. doi: 10.1016/S0304-4203(09)90025-1 CrossRefGoogle Scholar
  46. O’Brien D (1987) Direct observations of the behavior of Euphausia superba and Euphausia crystallorophias (Crustacea: euphausiacea) under pack ice during the Antarctic spring of 1985. J Crustacean Biol 7:437–448CrossRefGoogle Scholar
  47. Pakhomov EA, Froneman PW (2004) Zooplankton dynamics in the eastern Atlantic sector of the Southern Ocean during the austral summer 1997/1998—Part 1: community structure. Deep-Sea Res Pt II 51:2599–2616. doi: 10.1016/j.dsr2.2000.11.001 CrossRefGoogle Scholar
  48. Pasternak AF, Schnack-Schiel SB (2001) Seasonal feeding patterns of the dominant Antarctic copepods Calanus propinquus and Calanoides acutus in the Weddell Sea. Polar Biol 24:771–784CrossRefGoogle Scholar
  49. Quetin LB, Ross RM, Frazer TK, Haberman KL (2013) Factors affecting distribution and abundance of zooplankton, with an emphasis on Antarctic krill, Euphausia superba. Antarct Res Series 70:357–371. doi: 10.1029/AR070p0357 CrossRefGoogle Scholar
  50. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  51. Razouls S, Razouls C, De Bovée F (2000) Biodiversity and biogeography of Antarctic copepods. Antarct Sci 12:343–362CrossRefGoogle Scholar
  52. Schaafsma FL, David C, Pakhomov EA, Hunt BPV, Lange BA, Flores H, van Franeker JA (2016) Size and stage composition of age class 0 Antarctic krill (Euphausia superba) in the ice-water interface layer during winter/early spring. Polar Biol. doi: 10.1007/s00300-015-1877-7 Google Scholar
  53. Schmidt K, Atkinson A, Pond DW, Ireland LC (2014) Feeding and overwintering of Antarctic krill across its major habitats: the role of sea ice cover, water depth, and phytoplankton abundance. Limnol Oceanogr 59:17–36CrossRefGoogle Scholar
  54. Schnack-Schiel SB (2003) The macrobiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science Ltd., Oxford, UKGoogle Scholar
  55. Schnack-Schiel SB, Hagen W (1994) Life cycle strategies and seasonal variations in distribution and population structure of four dominant calanoid copepod species in the eastern Weddell Sea, Antarctica. J Plankton Res 16:1543–1566. doi: 10.1093/plankt/16.11.1543 CrossRefGoogle Scholar
  56. Schnack-Schiel SB, Hagen W (1995) Life-cycle strategies of Calanoides acutus, Calanus propinquus, and Metridia gerlachei (Copepoda: Calanoida) in the eastern Weddell Sea, Antarctica. ICES J Mar Sci 52:541–548. doi: 10.1016/1054-3139(95)80068-9 CrossRefGoogle Scholar
  57. Schnack-Schiel S, Mizdalski E (1994) Seasonal variations in distribution and population structure of Microcalanus pygmaeus and Ctenocalanus citer (Copepoda: Calanoida) in the eastern Weddell Sea, Antarctica. Mar Biol 119:357–366CrossRefGoogle Scholar
  58. Schnack-Schiel SB et al (1995) Life cycle strategy of the Antarctic calanoid copepod Stephos longipes. Prog Oceanogr 36:45–75. doi: 10.1016/0079-6611(95)00014-3 CrossRefGoogle Scholar
  59. Schnack-Schiel SB, Dieckmann GS, Gradinger R, Melnikov I, Spindler M, Thomas DN (2001a) Meiofauna in sea ice of the Weddell Sea (Antarctica). Polar Biol 24:724–728CrossRefGoogle Scholar
  60. Schnack-Schiel SB, Thomas DN, Haas C, Dieckmann GS, Alheit R (2001b) The occurrence of the copepods Stephos longipes (Calanoida) and Drescheriella glacialis (Harpacticoida) in summer sea ice in the Weddell Sea, Antarctica. Antarct Sci 13:150–157CrossRefGoogle Scholar
  61. Schnack-Schiel SB, Haas C, Michels J, Mizdalski E, Schünemann H, Steffens M, Thomas DN (2008a) Copepods in sea ice of the western Weddell Sea during austral spring 2004. Deep-Sea Res Pt II 55:1056–1067CrossRefGoogle Scholar
  62. Schnack-Schiel SB, Michels J, Mizdalski E, Schodlok MP, Schröder M (2008b) Composition and community structure of zooplankton in the sea ice-covered western Weddell Sea in spring 2004-with emphasis on calanoid copepods. Deep-Sea Res Pt II 55:1040–1055CrossRefGoogle Scholar
  63. Shannon C (1948) A mathematical theory of communication. Bell Sys Tech J 27:379–423CrossRefGoogle Scholar
  64. Siegel V (2005) Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol 29:1–22CrossRefGoogle Scholar
  65. Siegel V, Loeb V (1995) Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Mar Ecol Prog Ser 123:45–56CrossRefGoogle Scholar
  66. Siegel V, Skibowski A, Harm U (1992) Community structure of the epipelagic zooplankton community under the sea-ice of the northern Weddell Sea. Polar Biol 12:15–24CrossRefGoogle Scholar
  67. Spreen G, Kaleschke L, Heygster G (2008) Sea ice remote sensing using AMSR-E 89-GHz channels. J Geophys Res-Oceans 113:C02S03. doi: 10.1029/2005jc003384 CrossRefGoogle Scholar
  68. Thomas D, Dieckmann G (2002) Antarctic sea ice-a habitat for extremophiles. Science 295:641–644CrossRefPubMedGoogle Scholar
  69. Turner J, Hosking JS, Phillips T, Marshall GJ (2013) Temporal and spatial evolution of the Antarctic sea ice prior to the September 2012 record maximum extent. Geophys Res Lett 40:5494–5498. doi: 10.1002/2013gl058371 Google Scholar
  70. van Franeker JA, Bathmann UV, Mathot S (1997) Carbon fluxes to Antarctic top predators. Deep-Sea Res Pt Ii 44:435–455. doi: 10.1016/S0967-0645(96)00078-1 CrossRefGoogle Scholar
  71. van Franeker JA, Flores H, Van Dorssen M (2009) Surface and Under Ice Trawl (SUIT). In: Flores H (author) Frozen desert alive -the role of sea ice for pelagic macrofauna and its predators: implications for the Antarctic pack-ice food web. Dissertation, University of Groningen, Groningen, NetherlandsGoogle Scholar
  72. White MG, Piatkowski U (1993) Abundance, horizontal and vertical distribution of fish in eastern Weddell Sea micronekton. Polar Biol 13:41–53CrossRefGoogle Scholar
  73. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80–83CrossRefGoogle Scholar
  74. Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL (2008) Thickness distribution of Antarctic sea ice. J Geophys Res-Oceans 113:C05S92. doi: 10.1029/2007jc004254
  75. Yang G, Li C, Sun S (2011) Inter-annual variation in summer zooplankton community structure in Prydz Bay, Antarctica, from 1999 to 2006. Polar Biol 34:921–932. doi: 10.1007/s00300-010-0948-z CrossRefGoogle Scholar
  76. Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979–1998. J Geophys Res-Oceans 107:9-1–9-19. doi: 10.1029/2000jc000733 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Carmen David
    • 1
    • 2
  • Fokje L. Schaafsma
    • 3
  • Jan Andries van Franeker
    • 3
  • Benjamin Lange
    • 1
    • 2
  • Angelika Brandt
    • 2
  • Hauke Flores
    • 1
    • 2
  1. 1.Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)BremerhavenGermany
  2. 2.Centre for Natural History (CeNak), Zoological MuseumUniversity HamburgHamburgGermany
  3. 3.Institute for Marine Research and Ecosystem Studies Wageningen UR (IMARES)Den HelderThe Netherlands

Personalised recommendations