Advertisement

Polar Biology

, Volume 39, Issue 5, pp 925–945 | Cite as

Looking beneath the tip of the iceberg: diversification of the genus Epimeria on the Antarctic shelf (Crustacea, Amphipoda)

  • Marie L. VerheyeEmail author
  • Thierry Backeljau
  • Cédric d’Udekem d’Acoz
Original Paper

Abstract

The amphipod genus Epimeria is very speciose in Antarctic waters. Although their brooding biology, massive and heavily calcified body predict low dispersal capabilities, many Epimeria species are documented to have circum-Antarctic distributions. However, these distribution records are inevitably dependent on the morphological species definition. Yet, recent DNA evidence suggests that some of these Epimeria species may be complexes of species with restricted distributions. Mitochondrial COI and nuclear 28S rDNA sequence data were used to infer evolutionary relationships among 16 nominal Epimeria species from the Antarctic Peninsula, the eastern Weddell Sea and the Adélie Coast. Based on this phylogenetic framework, we used morphology and the DNA-based methods GMYC, bPTP and BPP to investigate species boundaries, in order to revise the diversity and distribution patterns within the genus. Most of the studied species appeared to be complexes of pseudocryptic species, presenting small and previously overlooked morphological differences. Altogether, 25 lineages were identified as putative new species, increasing twofold the actual number of Antarctic Epimeria species. Whereas most of the species may be geographically restricted to one of the three studied regions, some still have very wide distribution ranges, hence suggesting a potential for large-scale dispersal.

Keywords

Amphipoda Southern Ocean Systematics Biogeography Species delimitation Phylogeny 

Notes

Acknowledgments

The first author has a Ph.D. fellowship from F.R.I.A. (F.N.R.S., Belgium). The last author was funded by the Digit 3 program of BELSPO. We thank the Alfred-Wegener-Institut, Helmholtz-Zentrumfür Polar- und Meeresforschung (AWI) and the captain, crew and chief scientists of various R.V. Polarstern expeditions for their efficiency, as well as present and past colleagues of the staff of the Royal Belgian Institute of Natural Sciences (RBINS), especially Henri Robert and Charlotte Havermans, for collecting specimens on board. The research program led by Guillaume Lecointre, REVOLTA 1124, supported by the Institut polaire français Paul Émile Victor (IPEV) and the Muséum national d'Histoire naturelle (MNHN), and the CAML-CEAMARC cruise of RSV Aurora Australis (IPY project no. 53), supported by the Australian Antarctic Division, the Japanese Science Foundation and the IPEV (project ICOTA), are acknowledged for providing extensive biological material used in this study. We thank Laure Corbari (MNHN) for giving us access to this material. This publication is registered as CAML (Census of Antarctic Marine Life) publication No. 164 and contribution No. 210 to ANDEEP. Many thanks to Anton Van de Putte (RBINS) for kindly providing distribution maps. We are also grateful to Zohra Elouaazizi, Karin Breugelmans, Gontran Sonet and Zoltan Nagy (all RBINS) for helpful methodological advices.

Supplementary material

300_2016_1910_MOESM1_ESM.pdf (969 kb)
Supplementary material 1 (PDF 969 kb)

References

  1. Allcock AL, Strugnell JM (2012) Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol Evol 27:520–528CrossRefPubMedGoogle Scholar
  2. Allcock AL et al (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep Sea Res Part II Trop Stud Oceanogr 58:242–249CrossRefGoogle Scholar
  3. Anderson JB, Shipp SS, Lowe AL, Wellner JS, Mosola AB (2002) The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quat Sci Rev 21:49–70CrossRefGoogle Scholar
  4. Arango CP, Soler-Membrives A, Miller KJ (2011) Genetic differentiation in the circum—Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep Sea Res Part II Trop Stud Oceanogr 58:212–219CrossRefGoogle Scholar
  5. Baird HP, Miller KJ, Stark JS (2011) Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Mol Ecol 20:3439–3454CrossRefPubMedGoogle Scholar
  6. Barker FK, Lutzoni FM (2002) The utility of the incongruence length difference test. Syst Biol 51:625–637CrossRefPubMedGoogle Scholar
  7. Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarct Sci 8:3–6CrossRefGoogle Scholar
  8. Cabezas M, Cabezas P, Machordom A, Guerra-García JM (2013) Hidden diversity and cryptic speciation refute cosmopolitan distribution in Caprella penantis (Crustacea: Amphipoda: Caprellidae). J Zool Syst Evol Res 51:85–99CrossRefGoogle Scholar
  9. Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22:4369–4383CrossRefPubMedGoogle Scholar
  10. Clarke A, Crame JA (1989) The origin of Southern Ocean marine fauna. In: Crame JA (Ed) Origins and evolution of the Antarctic Biota. Special Publication No. 47. Geological Society, London, pp 253–268Google Scholar
  11. Clarke A, Crame JA, Stromberg JO, Barker PF (1992) The Southern Ocean benthic fauna and climate change: a historical perspective [and discussion]. Philos Trans Biol Sci 338:299–309CrossRefGoogle Scholar
  12. Coleman CO (1994) A new Epimeria species (Crustacea: Amphipoda: Epimeriidae) and redescriptions of three other species in the genus from the Antarctic Ocean. J Nat Hist 28:555–576CrossRefGoogle Scholar
  13. Coleman OC (2007) Synopsis of the Amphipoda of the Southern Ocean. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique 77(Suppl. 2):1–134Google Scholar
  14. Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? Mol Biol Evol 19:432–437CrossRefPubMedGoogle Scholar
  15. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415CrossRefGoogle Scholar
  17. De Broyer C, Scailteur Y, Chapelle G, Rauschert M (2001) Diversity of epibenthic habitats of gammaridean amphipods in the eastern Weddell Sea. Polar Biol 24:744–753CrossRefGoogle Scholar
  18. De Broyer C, Lowry JK, Jazdzewski K, Robert H (2007) Synopsis of the Amphipoda of the Southern Ocean. Part 1. Catalogue of the Gammaridean and Corophiidean Amphipoda (Crustacea) of the Southern Ocean with distribution and ecological data. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique 77(Suppl. 1):1–325Google Scholar
  19. Dietz L et al (2015) Regional differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean giant sea spider Colossendeis megalonyx. R Soc Open Sci 2:1–15CrossRefGoogle Scholar
  20. Dolphin K, Belshaw R, Orme CDL, Quicke DLJ (2000) Noise and incongruence: interpreting results of the incongruence length difference test. Mol Phylogenet Evol 17:401–406CrossRefPubMedGoogle Scholar
  21. Dömel JS, Convey P, Leese F (2015) Genetic data support independent glacial refugia and open ocean barriers to dispersal for the Southern Ocean sea spider Austropallene cornigera. (Möbius, 1902). J Crustacean Biol 35:480–490CrossRefGoogle Scholar
  22. Ence DD, Carstens BC (2011) SpedeSTEM: a rapid and accurate method for species delimitation. Mol Ecol Resour 11:473–480CrossRefPubMedGoogle Scholar
  23. Ezard T, Fujisawa T, Barraclough TG (2009) splits: SPecies’ LImits by Threshold Statistics R package version 10-14/r31. http://R-Forge.R-project.org/projects/splits/ Accessed 21 Jan 2016
  24. Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  25. Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol 62:707–724CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol 27:480–488CrossRefPubMedGoogle Scholar
  27. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423CrossRefGoogle Scholar
  28. Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P (2011) DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep Sea Res Part II Trop Stud Oceanogr 58:230–241CrossRefGoogle Scholar
  29. Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, Van der Vies SM, Wolff WJ (eds) Proceedings of the SCAR biology symposium Amsterdam, antarctic biology in a global context. Backhuys Publishers, Leiden, pp 87–95Google Scholar
  30. Held C, Wägele J-W (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci Mar 69:175–181CrossRefGoogle Scholar
  31. Hemery LG et al (2012) Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Mol Ecol 21:2502–2518CrossRefPubMedGoogle Scholar
  32. Hipp AL, Hall JC, Sytsma KJ (2004) Congruence versus phylogenetic accuracy: revisiting the incongruence length difference test. Syst Biol 53:81–89CrossRefPubMedGoogle Scholar
  33. Hou Z, Fu J, Li S (2007) A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 45:596–611CrossRefPubMedGoogle Scholar
  34. Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered 99:137–148CrossRefPubMedGoogle Scholar
  35. Janosik AM, Halanych KM (2010) Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integr Comp Biol 50:981–992CrossRefPubMedGoogle Scholar
  36. Janosik AM, Mahon A, Halanych K (2011) Evolutionary history of Southern Ocean Odontaster sea star species (Odontasteridae, Asteroidea). Polar Biol 34:575–586CrossRefGoogle Scholar
  37. Kaiser S et al (2013) Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Mar Biol 160:2295–2317CrossRefGoogle Scholar
  38. Katoh K, Stanley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  39. Krabbe K, Leese F, Mayer C, Tollrian R, Held C (2010) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol 33:281–292CrossRefGoogle Scholar
  40. Lanfear R, Calcott B, Ho SY, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701CrossRefPubMedGoogle Scholar
  41. Leaché AD, Fujita MK (2010) Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proc Biol Sci 277:3071–3077CrossRefPubMedPubMedCentralGoogle Scholar
  42. Leese F, Agrawal S, Held C (2010) Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften 97:583–594CrossRefPubMedGoogle Scholar
  43. Linse K, Cope T, Lörz A-N, Sands C (2007) Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30:1059–1068CrossRefGoogle Scholar
  44. Lörz A-N (2009) Synopsis of Amphipoda from two recent Ross Sea voyages with description of a new species of Epimeria (Epimeriidae, Amphipoda, Crustacea). Zootaxa 2167:59–68Google Scholar
  45. Lörz A-N, Maas EW, Linse K, Fenwick GD (2007) Epimeria schiaparelli sp. nov., an amphipod crustacean (family Epimeriidae) from the Ross Sea, Antarctica, with molecular characterisation of the species complex. Zootaxa 1402:23–27Google Scholar
  46. Lörz A-N, Maas EW, Linse K, Coleman CO (2009) Do circum-Antarctic species exist in peracarid Amphipoda? A case study in the genus Epimeria Costa, 1851 (Crustacea, Peracarida, Epimeriidae). Zookeys 18:91–128CrossRefGoogle Scholar
  47. Lörz A-N, Smith P, Linse K, Steinke D (2011) High genetic diversity within Epimeria georgiana (Amphipoda) from the southern Scotia Arc. Mar Biodiv 42:137–159CrossRefGoogle Scholar
  48. Mackintosh AN et al (2014) Retreat history of the East Antarctic Ice Sheet since the last glacial maximum. Quat Sci Rev 100:10–30CrossRefGoogle Scholar
  49. Mahon AR, Arango CP, Halanych KM (2008) Genetic diversity of Nymphon (Arthropoda: Pycnogonida: Nymphonidae) along the Antarctic Peninsula with a focus on Nymphon australe Hodgson 1902. Mar Biol 155:315–323CrossRefGoogle Scholar
  50. Menzies RJ, George RY, Rowe GT (1979) Abyssal environment and ecology of the world oceans. Wiley, New YorkGoogle Scholar
  51. Miralles A, Vences M (2013) New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in madascincus lizards. PLoS One 8:1–20Google Scholar
  52. Misof B, Misof K (2009) A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst Biol 58:21–34CrossRefPubMedGoogle Scholar
  53. Monaghan MT et al (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol 58:298–311CrossRefPubMedGoogle Scholar
  54. Nahavandi N, Ketmaier V, Plath M, Tiedemann R (2013) Diversification of Ponto-Caspian aquatic fauna: morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae). Mol Phylogenetics Evol 69:1063–1076CrossRefGoogle Scholar
  55. O’Loughlin MP, Paulay G, Davey N, Michonneau F (2011) The Antarctic region as a marine biodiversity hotspot for echinoderms: diversity and diversification of sea cucumbers. Deep Sea Res Part II 58:264–275CrossRefGoogle Scholar
  56. Otto JC, Wilson KJ (2001) Assessment of the usefulness of ribosomal 18S and mitochondrial COI sequences in Prostigmata phylogeny. In: Halliday RB, Walter DE, Proctor HC, Norton RA, Colloff MJ (eds) Acarology: proceedings of the 10th international congress. CSIRO Publishing, Victoria, pp 100–109Google Scholar
  57. Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:1–14CrossRefGoogle Scholar
  58. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefPubMedGoogle Scholar
  59. Pearse JS, Mooi R, Lockhart SJ, Brandt A (2008) Brooding and species diversity in the Southern Ocean: selection for brooders or speciation within brooding clades? In: Krupnik I, Lang MA, Miller SE (eds) Smithsonian at the poles: contributions to international polar year science. Smithsonian Institution Scholarly Press, Washington, pp 181–196Google Scholar
  60. Pons J et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609CrossRefPubMedGoogle Scholar
  61. Powell JR (2012) Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data. Methods Ecol Evol 3:1–11CrossRefGoogle Scholar
  62. Rambaut A, Drummond A (2005) Tracer, a program for analyzing results from Bayesian MCMC programs such as BEAST & MrBayes, version 1.3. http://evolve.zoo.ox.ac.uk/software.html?id=tracer. Accessed 14 Aug 2015
  63. Rannala B, Yang Z (2013) Improved reversible jump algorithms for Bayesian species delimitation. Genetics 194:245–253CrossRefPubMedPubMedCentralGoogle Scholar
  64. Raupach MJ, Wägele J-W (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarct Sci 18:191–198CrossRefGoogle Scholar
  65. Raupach MJ, Malyutina M, Brandt A, Wägele J-W (2007) Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep Sea Res Part II Trop Stud Oceanogr 54:1820–1830CrossRefGoogle Scholar
  66. Riesgo A, Taboada S, Avila C (2015) Evolutionary patterns in Antarctic marine invertebrates: an update on molecular studies. Mar Genom 23:1–13CrossRefGoogle Scholar
  67. Rogers AD (2007) Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philos Trans R Soc Lond B Biol Sci 362:2191–2214CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  69. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:1–11CrossRefGoogle Scholar
  70. Satler JD, Carstens BC, Hedin M (2013) Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Syst Biol 62:805–823CrossRefPubMedGoogle Scholar
  71. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438CrossRefPubMedGoogle Scholar
  72. Schüller M (2011) Evidence for a role of bathymetry and emergence in speciation in the genus Glycera (Glyceridae, Polychaeta) from the deep eastern Weddell Sea. Polar Biol 34:549–564CrossRefGoogle Scholar
  73. Sites JW Jr, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 35:199–227CrossRefGoogle Scholar
  74. Smith JA, Hillenbrand C-D, Pudsey CJ, Allen CS, Graham AGC (2010) The presence of polynyas in the Weddell Sea during the Last Glacial Period with implications for the reconstruction of sea-ice limits and ice sheet history. Earth Planet Sci Lett 296:287–298CrossRefGoogle Scholar
  75. Som A (2015) Causes, consequences and solutions of phylogenetic incongruence. Brief Bioinform 16:536–548CrossRefPubMedGoogle Scholar
  76. Stolldorf T, Schenke H-W, Anderson JB (2012) LGM ice sheet extent in the Weddell Sea: evidence for diachronous behavior of Antarctic Ice Sheets. Quat Sci Rev 48:20–31CrossRefGoogle Scholar
  77. Struck TH (2014) TreSpEx—detection of misleading signal in phylogenetic reconstructions based on tree information. Evol Bioinform 10:51–67CrossRefGoogle Scholar
  78. Struck TH, Purschke G, Halanych KM (2006) Phylogeny of Eunicida (Annelida) and exploring data congruence using a partition addition bootstrap alteration (PABA) approach. Syst Biol 55:1–20CrossRefPubMedGoogle Scholar
  79. Strugnell JM, Cherel Y, Cooke IR, Gleadall IG, Hochberg FG, Ibanez CM, Jorgensen E, Laptikhovsky VV, Linse K, Norman M, Vecchione M, Voight JR, Allcock AL (2011) The Southern Ocean: Source and sink? Deep-Sea Res II 58:196–204CrossRefGoogle Scholar
  80. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods) version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  81. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  82. Thatje S (2012) Effects of capability for dispersal on the evolution of diversity in Antarctic benthos. Integr Comp Biol 52:470–482CrossRefPubMedGoogle Scholar
  83. Thatje S, Hillenbrand C-D, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540CrossRefPubMedGoogle Scholar
  84. Thatje S, Hillenbrand C-D, Mackensen A, Larter R (2008) Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89:682–692CrossRefPubMedGoogle Scholar
  85. Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117CrossRefPubMedGoogle Scholar
  86. Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930CrossRefPubMedGoogle Scholar
  87. Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180CrossRefGoogle Scholar
  88. Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904CrossRefGoogle Scholar
  89. Wilson NG, Schrodl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984CrossRefPubMedGoogle Scholar
  90. Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 15:3073–3082CrossRefPubMedGoogle Scholar
  91. Yang Z (2015) The BPP program for species tree estimation and species delimitation. Curr Zool 61:854–865CrossRefGoogle Scholar
  92. Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci 107:9264–9269CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yang Z, Rannala B (2014) Unguided species delimitation using DNA sequence data from multiple loci. Mol Biol Evol 31:3125–3135CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yoder AD, Irwin JA, Payseur BA (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Syst Biol 50:408–424CrossRefPubMedGoogle Scholar
  95. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zinsmeister WJ, Feldmann RM (1984) Cenozoic high latitude heterochroneity of southern hemisphere marine faunas. Science 224:281–283CrossRefPubMedGoogle Scholar
  97. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, University of TexasGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marie L. Verheye
    • 1
    • 2
    Email author
  • Thierry Backeljau
    • 1
    • 3
  • Cédric d’Udekem d’Acoz
    • 1
  1. 1.Royal Belgian Institute of Natural SciencesBrusselsBelgium
  2. 2.Marine Biology Laboratory, Department of BiologyCatholic University of Louvain-la-NeuveLouvain-la-NeuveBelgium
  3. 3.Evolutionary Ecology GroupUniversity of AntwerpAntwerpBelgium

Personalised recommendations