Advertisement

Polar Biology

, Volume 39, Issue 11, pp 2179–2188 | Cite as

Migration strategies of common eiders from Svalbard: implications for bilateral conservation management

  • Sveinn Are HanssenEmail author
  • Geir Wing Gabrielsen
  • Jan Ove Bustnes
  • Vegard Sandøy Bråthen
  • Elise Skottene
  • Anette A. Fenstad
  • Hallvard Strøm
  • Vidar Bakken
  • Richard A. Phillips
  • Børge Moe
Original Paper

Abstract

The Arctic is a highly seasonal environment with a harsh climate and extensive sea ice cover during the winter. Consequently, most Arctic-breeding seabirds migrate south to reach more benign environmental conditions. Knowledge of migration routes and wintering areas is integral for successful conservation of these globally important breeding populations. In this study, we deployed light-level geolocators on female common eiders Somateria mollissima breeding in Kongsfjorden, Svalbard, to track movements during the non-breeding season. We retrieved functioning loggers from 47 individual birds in 2009–2013 and mapped their migration routes and wintering areas. Thirty-six birds (77 %) wintered around the Icelandic coast and 11 (23 %) off the coasts of North Norway. Autumn migration took place between late August and late December, and spring migration from late March to late May. The migration (ca 1700 km to Iceland and 1300 km to North Norway) lasted for about 4 days in autumn and 3 days in spring. Later arrival resulted in later nest initiation, implying a carry-over effect of winter conditions on subsequent breeding. Birds that migrated to Norway departed later from Svalbard in autumn and consequently spent less time in the wintering area than individuals that migrated to Iceland. As just two countries, Iceland and Norway, appear to host all common eiders from Svalbard during the winter, the new information provided by this study on the core areas and timing of migration should provide the impetus for improved bilateral conservation management of this important Arctic breeding population of common eiders.

Keywords

Common eider Arctic Migration Wintering area Geolocation Conservation 

Notes

Acknowledgments

We thank Kjell Tore Hansen, Maarten Loonen, Thomas Oudman, Elise Biersma, Anouk Goedknegt, Fokje Schaafsma, Tore Nordstad and Kjetil Sagerup for help during fieldwork and personnel at Norwegian Polar Institute/Sverdrupstasjonen in Ny-Ålesund for logistic support. James Fox, Karine Delord, Céline Clément Chastel, Olivier Chastel, Morten Frederiksen, Michael Greenacre and Rob van Bemmelen provided valuable technical inputs, the Norwegian Ringing Centre (Museum Stavanger) provided ringing and recovery data. Comments from Anders Mosbech and an anonymous reviewer greatly improved the manuscript. Permissions for fieldwork and instrumentation were granted by the Governor of Svalbard and Norwegian Animal Research Authority (NARA/FDU). Funding was provided by the Norwegian Research Council (Birdhealth/IPY, Arctic Field Grant/Svalbard Science Forum), Nansenfondet, Norsk Ornitologisk Forening (NOF), Ekteparet Sørlies fond til beste for viltlevende fugler, FRAM—High North Research Centre for Climate and the Environment and SEATRACK.

Supplementary material

300_2016_1908_MOESM1_ESM.docx (14.4 mb)
Supplementary material 1 (DOCX 14789 kb)

References

  1. Bakken V, Anker-Nilssen T (2012) Herkomst av sjøfugler langs norskekysten utenom hekkeperioden. Rapport til Oljeindustriens Landsforening. Det Norske Veritas, Arctic Research and Consulting (ARC) and SEAPOP. DNV rapport nr. 2013–1340Google Scholar
  2. Bakken V, Runde O, Tjørve E (2003) Norsk ringmerkingsatlas vol1. Stavanger Museum, StavangerGoogle Scholar
  3. Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Prog Ser 303:167–175CrossRefGoogle Scholar
  4. Bugoni L, D’Alba L, Furness RW (2009) Marine habitat use of wintering spectacled petrels Procellaria conspicillata, and overlap with longline fishery. Mar Ecol Prog Ser 374:273–285CrossRefGoogle Scholar
  5. Bustnes JO, Lønne OJ (1997) Habitat partitioning among sympatric wintering common eiders Somateria mollissima and king eiders Somateria spectabilis. Ibis 139:549–554CrossRefGoogle Scholar
  6. Bustnes JO, Tertitski GM (2000) Common eider Somateria mollissima. In: Anker-Nilssen T, Bakken V, Strøm,H, Golovkin AN, Bianki VV, Tatarinkova, IP(eds). The status of marine birds breeding in the Barents Sea region. Norsk Polarinstitutt Rapportserie nr. 113, Norsk Polarinstitutt, Tromsø, pp 46–50Google Scholar
  7. Bustnes JO, Moe B, Herzke D, Hanssen SA, Nordstad T, Sagerup K, Gabrielsen GW, Borgå K (2010) Strongly increasing blood concentrations of lipid-soluble organochlorines in high-Arctic common eiders during incubation fast. Chemosphere 79:320–325CrossRefPubMedGoogle Scholar
  8. Bustnes JO, Moe B, Helberg M, Phillips RA (2013) Rapid long-distance migration in Norwegian lesser black-backed gulls Larus fuscus fuscus along their eastern flyway. Ibis 155:402–406CrossRefGoogle Scholar
  9. CAFF Circumpolar Seabird Working Group (1997) Circumpolar eider conservation strategy and action plan. Akureyri, Iceland, p 16Google Scholar
  10. Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519CrossRefGoogle Scholar
  11. Chaulk KG, Mahoney ML (2012) Does spring ice cover influence nest initiation date and clutch size in common eiders? Polar Biol 35:645–653CrossRefGoogle Scholar
  12. Cramp S (ed) (1992) The birds of the western Palearctic, vol VI. Oxford Univ. Press, OxfordGoogle Scholar
  13. Del Hoyo J, Elliott E, Sargatal J (eds) (1992) Handbook of the Birds of the World, vol 1. Lynx Editions, BarcelonaGoogle Scholar
  14. Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW et al (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107:2078–2081. doi: 10.1073/pnas.0909493107 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fauchald P, Anker-Nilssen T, Barrett RT, Bustnes JO, Bårdsen BJ, Christensen-Dalsgaard S, Descamps S, Engen S, Erikstad KE, Hanssen SA, Lorentsen S-H, Moe B, Reiertsen TK, Strøm H, Systad GH (2015) The status and trends of seabirds breeding in Norway and Svalbard—NINA Report 1151, p 84Google Scholar
  16. Fenstad AA, Jenssen BM, Moe B, Hanssen SA, Bingham C, Herzke D, Bustnes JO, Krøkje Å (2014) DNA double-strand breaks in relation to persistent organic pollutants in a fasting seabird. Ecotox Environ Safe 106:68–75CrossRefGoogle Scholar
  17. Fort J, Moe B, Strøm H, Grémillet D, Welcker J, Schultner J, Jerstad K, Johansen KA, Phillips RA, Mosbech A (2013) Multi-colony tracking reveals potential threats to little auks wintering in the North Atlantic from marine pollution and shrinking sea-ice cover. Divers Distrib 19:1322–1332CrossRefGoogle Scholar
  18. Fox J (2010) Geolocator manual v8. British Antarctic Survey, CambridgeGoogle Scholar
  19. Fox J (2015) intiproc geolocation processing software. user reference manual Intiproc v1.03 (January 2015). Migrate Technology Ltd, CambridgeGoogle Scholar
  20. Fox AD, Jónsson JE et al (2015) Current and potential threats to Nordic duck populations—a horizon scanning exercise. Ann Zool Fenn 52:193–220CrossRefGoogle Scholar
  21. Frederiksen M, Moe B, Daunt F, Phillips RA, Barrett RT et al (2012) Multicolony tracking reveals the winter distribution of a pelagic seabird on an ocean basin scale. Divers Distrib 18:530–542CrossRefGoogle Scholar
  22. Gabrielsen GW, Mehlum F, Karlsen HE, Andresen Ø, Parker H (1991) Energy cost during incubation and thermoregulation in the female Common Eider Somateria mollissima. Nor Polarinst Skr 195:51–62Google Scholar
  23. Gardarsson A (2009) Number of common eider, long-tailed duck, red-breasted merganser and mallard, wintering on the coast of Iceland. Bliki 30:49–54 (In Icelandic with an English summary) Google Scholar
  24. Gilg O, Moe B, Hanssen SA, Schmidt NM, Sittler B et al (2013) Trans-equatorial migration routes, staging sites and wintering areas of a high-arctic avian predator: the long-tailed skua (Stercorarius longicaudus). PLoS ONE 8(5):e64614. doi: 10.1371/journal.pone.0064614 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guillemette M, Himmelman JH, Barette C, Reed A (1993) Habitat selection by common eiders in winter and its interaction with flock size. Can J Zool 71:1259–1266CrossRefGoogle Scholar
  26. Hanssen SA, Engebretsen H, Erikstad KE (2002) Incubation start and egg size in relation to body reserves in the common eider. Behav Ecol Sociobiol 52:282–288CrossRefGoogle Scholar
  27. Hanssen SA, Moe B, Bårdsen B-J, Hanssen F, Gabrielsen GW (2013) A natural anti-predation experiment: predator control and reduced sea ice increases colony size in a long-lived duck. Ecol Evol 3:3554–3564. doi: 10.1002/ece3.735 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Herrera CM (1978) On the breeding distribution pattern of European migrant birds: MacArthur’s theme reexamined. Auk 95:496–509Google Scholar
  29. Jenssen BM, Ekker M, Bech C (1989) Thermoregulation in winter acclimatized common eiders Somateria mollissima. Can J Zool 67:669–673CrossRefGoogle Scholar
  30. Jónnsson JE, Gardarsson A, Gill JA, Pétursdóttir UK, Petersen A, Gunnarsson TG (2013) Relationships between long-term demography and weather in a sub-arctic population of common eider. PLoS ONE 8(6):e67093. doi: 10.1371/journal.pone.0067093 CrossRefGoogle Scholar
  31. Leat EHK, Bourgeon S, Magnusdottir E, Gabrielsen GW, Grecian WJ, Hanssen SA, Olafsdottir K, Petersen A, Philips RA, Strøm H, Ellis S, Fisk AT, Bustnes JO, Furness RW, Borgå K (2013) Influence of wintering area on persistent organic pollutants in a breeding migratory seabird. Mar Ecol Prog Ser 491:277–293CrossRefGoogle Scholar
  32. Lisovski S, Hahn S (2012) GeoLight- processing and analysing light-based geolocator data in R. Methods Ecol Evol 3:1055–1059CrossRefGoogle Scholar
  33. Lydersen C, Gjertz I, Weslawski JM (1989) Stomach contents of autumn feeding marine vertebrates from Hornsund, Svalbard. Polar Record 25:107–114CrossRefGoogle Scholar
  34. Magnusdottir E, Leat EHK, Bourgeon S, Strøm H, Petersen A, Philips RA, Hanssen SA, Bustnes JO, Hersteinsson P, Furness RW (2012) Wintering areas of great skuas Stercorarius skua breeding in Scotland, Iceland and Norway. Bird Study 59:1–9CrossRefGoogle Scholar
  35. Mehlum F (1991) Egg predation in a breeding colony of the common eider Somateria mollissima in Kongsfjorden, Svalbard. Nor Polarinst Skr 195:37–45Google Scholar
  36. Mitchell PI, Newton SF, Ratcliffe N, Dunn TE (2004) Seabird populations of Britain and Ireland. T. & A.D Poyser, LondonGoogle Scholar
  37. Moe B, Stempniewicz L, Jakubas D, Angelier F, Chastel O, Dienessen F, Gabrielsen GW, Hanssen F, Karnovsky N, Rønning B, Welcker J, Wojczulanis-Jakubas K, Bech C (2009) Climate change and phenological responses of two seabird species breeding in the high-Arctic. Mar Ecol Prog Ser 393:235–246CrossRefGoogle Scholar
  38. Mosbech A, Gilchrist G, Merkel F, Sonne C, Flagstad A, Nyegaard H (2006) Year-round movements of Northern common eiders Somateria mollissima borealis breeding in Arctic Canada and West Greenland followed by satellite telemetry. Ardea 94:651–665Google Scholar
  39. Mosbech A, Bjerrum M, Johansen K, Sonne C (2009) Satellite tracking of common eider. In: Magelund Jensen L, Rasch M (eds) Zackenberg ecological research operations. 14th Annual Report 2008. National Environmental Research Institute, Aarhus University, Denmark, pp 91–91Google Scholar
  40. Newton I, Dale L (1996) Relationship between migration and latitude among European birds. J Anim Ecol 65:137–146CrossRefGoogle Scholar
  41. Parker H, Holm H (1990) Patterns of nutrient and energy expenditure in female common eiders nesting in the high Arctic. Auk 107:660–668CrossRefGoogle Scholar
  42. Phillips RA, Silk JRD, Croxall JP, Afanasyev V, Briggs DR (2004) Accuracy of geolocation estimates for flying seabirds. Mar Ecol Prog Ser 266:265–272CrossRefGoogle Scholar
  43. Phillips RA, Silk JDR, Croxall JP, Afanasyev V, Bennett VJ (2005) Summer distribution and migration of nonbreeding albatrosses: individual consistencies and implications for conservation. Ecology 86:2386–2396CrossRefGoogle Scholar
  44. Phillips RA, Croxall JP, Silk JRD, Briggs DR (2007) Foraging ecology of albatrosses and petrels from South Georgia: two decades of insights from tracking technologies. Aquat Conserv 17:S6–S21CrossRefGoogle Scholar
  45. Prop J, Aars J, Bårdsen B-J, Hanssen SA, Bech C, Bourgeon S, de Fouw J, Gabrielsen GW, Lang J, Noreen E, Oudman T, Sittler B, Stempniewicz L, Tombre I, Wolters E, Moe B (2015) Climate change and the increasing impact of polar bears on bird populations. Front Ecol Evol 3:33. doi: 10.3389/fevo.2015 CrossRefGoogle Scholar
  46. R Core Development Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org/
  47. SAS Institute Inc (1999) SAS OnlineDoc®, version 8. SAS institute Inc, Cary (NC)Google Scholar
  48. Schultner J, Moe B, Chastel O, Tartu S, Bech C, Kitaysky AS (2014) Experimental evidence for corticosterone as a mediator of carry-over effects between breeding and migration. Mar Ecol Prog Ser 496:125–133CrossRefGoogle Scholar
  49. Spurr E, Milne H (1976) Adaptive significance of autumn pair formation in common eider Somateria mollissima (L.). Ornis Scand 7:85–89CrossRefGoogle Scholar
  50. Strøm H (2006) Svalbards fugler. p. 86–191 in Svalbards fugler og pattedyr (K.M. Kovacs and Christian Lydersen, red.). Polarhåndbok Nr. 13, Norsk PolarinstituttGoogle Scholar
  51. Sutherland (1998) Evidence for flexibility and constraint in migration systems. J Avian Biol 29:441–446CrossRefGoogle Scholar
  52. Svendsen H et al (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  53. Swennen C (1990) Dispersal and migratory movements of Eiders Somateria mollissima breeding in the Netherlands. Ornis Scand 21:17–27CrossRefGoogle Scholar
  54. Tellería JL, Pérez-Tris J, Carbonell R (2001) Seasonal changes in abundance and flight-related morphology reveal different migration patterns in Iberian forest passerines. Ardeola 48:27–46Google Scholar
  55. Varpe Ø (2010) Stealing bivalves from common eiders: kleptoparasitism by glaucous gulls in spring. Polar Biol 33:359–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sveinn Are Hanssen
    • 1
    Email author
  • Geir Wing Gabrielsen
    • 2
  • Jan Ove Bustnes
    • 1
  • Vegard Sandøy Bråthen
    • 3
  • Elise Skottene
    • 4
  • Anette A. Fenstad
    • 4
  • Hallvard Strøm
    • 2
  • Vidar Bakken
    • 5
  • Richard A. Phillips
    • 6
  • Børge Moe
    • 3
  1. 1.FRAM—High North Research Centre for Climate and the EnvironmentNorwegian Institute for Nature Research (NINA)TromsøNorway
  2. 2.FRAM—High North Research Centre for Climate and the EnvironmentNorwegian Polar InstituteTromsøNorway
  3. 3.Norwegian Institute for Nature Research (NINA)TrondheimNorway
  4. 4.Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
  5. 5.ARC DAVåler i ØstfoldNorway
  6. 6.British Antarctic SurveyNatural Environment Research CouncilCambridgeshireUK

Personalised recommendations