Polar Biology

, Volume 39, Issue 12, pp 2441–2456 | Cite as

Evidence for dispersal and habitat controls on pond diatom communities from the McMurdo Sound Region of Antarctica

  • A. Sakaeva
  • E. R. Sokol
  • T. J. Kohler
  • L. F. Stanish
  • S. A. Spaulding
  • A. Howkins
  • K. A. Welch
  • W. B. Lyons
  • J. E. Barrett
  • D. M. McKnight
Original Paper

Abstract

Microbial life flourishes in the ponds of the McMurdo Sound Region, which includes the McMurdo Dry Valleys (MDV) and the exposed coastal areas of Ross Island, Antarctica. Diatoms live within resident microbial mats, and because of the simplified trophic structure and limited dispersal vectors, the McMurdo Sound Region is an ideal locality to investigate diatom community assembly processes. Wind is hypothesized to transport microbiota between habitats, and following the species-sorting perspective, local conditions should act as an environmental filter. However, the role of spatial scale versus habitat characteristics on diatom community structure has not been investigated. To gain insight into these processes, we sampled microbial mats from 25 ponds and used variation partitioning to assess the spatial scales at which diatoms were influenced by chemistry and physical variables. We found substantial spatial structure in diatom communities, and spatial scale explained more variability than environmental variables. No diatoms were exclusive to Ross Island, but some species were only found in the MDVs. Furthermore, diatom communities were more likely to resemble those from other nearby ponds rather than distant ones, regardless of environmental conditions. Of the environmental variables, bromide and chloride (both indicators of marine influence) were among the most important. These results suggest that geography, dispersal, and historical environmental conditions play a major role in structuring diatom communities at large spatial scales, and chemistry may be more important within regions. These results help explain the biogeography of diatoms here and elsewhere and expand our knowledge of mechanisms influencing microbial metacommunity structure.

Keywords

Metacommunity Beta-diversity Cape Royds Species sorting Dry Valley Distance effect 

Supplementary material

300_2016_1901_MOESM1_ESM.pdf (256 kb)
Supplementary material 1 (PDF 255 kb)

References

  1. Baas-Becking LGM (1934) Geobiologie of inleiding tot de Milieukunde. Van Stockum and Zoon, The HagueGoogle Scholar
  2. Blanchet FG, Legendre P, Borcard D (2008a) Forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1 CrossRefPubMedGoogle Scholar
  3. Blanchet FG, Legendre P, Borcard D (2008b) Modelling directional spatial processes in ecological data. Ecol Model 215:325–336. doi:10.1016/j.ecolmodel.2008.04.001 CrossRefGoogle Scholar
  4. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68. doi:10.1016/S0304-3800(01)00501-4 CrossRefGoogle Scholar
  5. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179 CrossRefGoogle Scholar
  6. Broady PA (1989) Broadscale patterns in the distribution of aquatic and terrestrial vegetation at three icefree regions on Ross Island, Antarctica. In: Vincent W, Ellis-Evans C (eds) High latitude limnology. Kluwer, Dordrecht. Developments in Hydrobiology 49: 77–95. doi: 10.1007/978-94-009-2603-5_7
  7. Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335. doi:10.1007/BF00051981 CrossRefGoogle Scholar
  8. Brown A, McKnight DM, Chin YP, Roberts EC, Uhle M (2004) Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica. Mar Chem 89:327–337. doi:10.1016/j.marchem.2004.02.016 CrossRefGoogle Scholar
  9. Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Groundwater 36:338–350. doi:10.1111/j.1745-6584.1998.tb01099.x CrossRefGoogle Scholar
  10. Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520. doi:10.1038/nature710 CrossRefPubMedGoogle Scholar
  11. Esposito RMM, Horn SL, McKnight DM, Cox MJ, Grant MC, Spaulding SA, Doran PT, Cozzetto KD (2006) Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophys Res Lett 33:L07406.1-L07406.4. doi: 10.1029/2006GL025903
  12. Esposito RMM, Spaulding SA, McKnight DM, Van de Vijver B, Kopalová K, Lubinski D, Hall B, Whittaker T (2008) Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica. Can J Botany 86:1378–1392. doi:10.1139/B08-100 CrossRefGoogle Scholar
  13. Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784. doi:10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2CrossRefGoogle Scholar
  14. Fountain AG, Lyons WB, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead DL, Parsons AN, Priscu JC, Wall DH, Wharton RA, Virginia RA (1999) Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49:961–971. doi:10.1525/bisi.1999.49.12.961 CrossRefGoogle Scholar
  15. Gooseff MN, McKnight DM, Runkel RL, Duff JH (2004) Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnol Oceanogr 49:1884–1895. doi:10.4319/lo.2004.49.5.1884 CrossRefGoogle Scholar
  16. Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS (2013) Robust estimation of microbial diversity in theory and in practice. ISME J 7:1092–1101. doi:10.1038/ismej.2013.10 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Healy M, Webster-Brown JG, Brown KL, Lane V (2006) Chemistry and stratification of Antarctic meltwater ponds II: inland ponds in the McMurdo Dry Valleys, Victoria Land. Antarct Sci 18:525–533. doi:10.1017/S0954102006000575 CrossRefGoogle Scholar
  18. Heino J, Tolkkinen M, Pirttilä AM, Aisala H, Mykrä H (2014) Microbial diversity and community–environment relationships in boreal streams. J Biogeogr 41:2234–2244. doi:10.1111/jbi.12369 CrossRefGoogle Scholar
  19. Hijmans RJ (2014) geosphere: Spherical Trigonometry. R package version 1.3-11. http://CRAN.R-project.org/package=geosphere. Accessed 20 Nov 2015
  20. Howard-Williams C, Hawes I (2007) Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle. Antarct Sci 19:205–217. doi:10.1017/S0954102007000284 CrossRefGoogle Scholar
  21. Jost L, Chao A, Chazdon RL (2011) Compositional similarity and beta diversity. In: Magurran AE, McGill BJ (eds) Biological diversity: Frontiers in measurement and assessment. Oxford University Press, Oxford, pp 68–84Google Scholar
  22. Kawecka B, Olech M, Nowogrodzka-Zagórska M, Wojtuń B (1998) Diatom communities in small water bodies at H. Arctowski Polish Antarctic Station (King George Island, South Shetland Islands, Antarctica). Polar Biol 19:183–192. doi:10.1007/s003000050233 CrossRefGoogle Scholar
  23. Kociolek JP, Spaulding SA (2000) Freshwater diatom biogeography. Nova Hedwigia 71:223–242Google Scholar
  24. Kohler TJ, Kopalová K, Van de Vijver B, Kociolek JP (2015a) The genus Luticola D.G.Mann (Bacillariophyta) from the McMurdo Sound Region, Antarctica, with the description of four new species. Phytotaxa 208:103–134. doi:10.11646/phytotaxa.208.2.1 CrossRefGoogle Scholar
  25. Kohler TJ, Stanish LF, Crisp SW, Koch JC, Liptzin D, Baeseman JL, McKnight DM (2015b) Life in the main channel: long-term hydrologic control of microbial mat abundance in McMurdo Dry Valley streams, Antarctica. Ecosystems 18:310–327. doi:10.1007/s10021-014-9829-6 CrossRefGoogle Scholar
  26. Konfirst MA, Sjunneskog C, Scherer RP, Doran PT (2011) A diatom record of environmental change in Fryxell Basin, Taylor Valley, Antarctica, late Pleistocene to present. J Paleolimnol 46:257–272. doi:10.1007/s10933-011-9537-6 CrossRefGoogle Scholar
  27. Kopalová K, Van de Vijver B (2013) Structure and ecology of freshwater benthic diatom communities from Byers Peninsula, Livingston Island, South Shetland Islands. Antarct Sci 25:239–253CrossRefGoogle Scholar
  28. Kopalová K, Nedbalová L, Nývlt D, Elster J, Van de Vijver B (2013) Diversity, ecology and biogeography of the freshwater diatom communities from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Polar Biol 36:933–948CrossRefGoogle Scholar
  29. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24. doi:10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2CrossRefGoogle Scholar
  30. Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi:10.1111/j.1461-0248.2004.00608.x CrossRefGoogle Scholar
  31. Lyons WB, Welch KA, Gardner CB, Jaros C, Moorhead DL, Knoepfle JL, Doran PT (2012) The geochemistry of upland ponds, Taylor Valley, Antarctica. Antarct Sci 24:3–14. doi:10.1017/S0954102011000617 CrossRefGoogle Scholar
  32. Martiny JBH, Bohannan BJ, Brown JH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. doi:10.1038/nrmicro1341 CrossRefPubMedGoogle Scholar
  33. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  34. McKnight DM, Andrews ED, Spaulding SA, Aiken GR (1994) Aquatic fulvic acids in algal-rich Antarctic ponds. Limnol Oceanogr 39:1972–1979. doi:10.4319/lo.1994.39.8.1972 CrossRefGoogle Scholar
  35. McKnight DM, Niyogi DK, Alger AS, Bomblies A, Conovitz PA, Tate CM (1999) Dry valley streams in Antarctica: ecosystems waiting for water. Bioscience 49:985–995. doi:10.1525/bisi.1999.49.12.985 CrossRefGoogle Scholar
  36. Monaghan AJ, Bromwich DH, Powers JG, Manning KW (2005) The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. J Clim 18:1174–1189CrossRefGoogle Scholar
  37. Nkem JN, Wall DH, Virginia RA, Barrett JE, Broos EJ, Porazinska DL, Adams BJ (2006) Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol 29:346–352. doi:10.1007/s00300-005-0061-x CrossRefGoogle Scholar
  38. Nylen TH, Fountain AG, Doran PT (2004) Climatology of katabatic winds in the McMurdo Dry Valleys, southern Victoria Land. Antarctica. J Geophys Res-Atmos 109:D03114. doi:10.1029/2003JD003937 Google Scholar
  39. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan. Accessed 20 Nov 2015
  40. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices - estimation and comparison of fractions. Ecology 87:2614–2625. doi:10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2CrossRefPubMedGoogle Scholar
  41. Pla-Rabes S, Toro M, Van De Vijver B, Rochera C, Villaescusa JA, Camacho A, Quesada A (2013) Stability and endemicity of benthic diatom assemblages from different substrates in a maritime stream on Byers Peninsula, Livingston Island, Antarctica: the role of climate variability. Antarct Sci 25:254–269. doi:10.1017/S0954102012000922 CrossRefGoogle Scholar
  42. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 20 Nov 2015
  43. Roberts D, McMinn A (1999) Diatoms of the saline lakes of the Vestfold Hills, Antarctica. Bibliotheca Diatomologica 44:1–82Google Scholar
  44. Roberts D, McMinn A, Johnston N, Gore DB, Melles M, Cremer H (2001) An analysis of the limnology and sedimentary diatom flora of fourteen lakes and ponds from the Windmill Islands, East Antarctica. Antarct Sci 13:410–419. doi:10.1017/S0954102001000578 CrossRefGoogle Scholar
  45. Rochera C, Fernandez-Valiente E, Van de Vijver B, Rico E, Toro M, Vincent WF, Quesada A, Camacho A (2013) Community structure and photosynthetic activity of benthic biofilms from a waterfall in the maritime Antarctica. Polar Biol 36:1709–1722. doi:10.1007/s00300-013-1388-3 CrossRefGoogle Scholar
  46. Šabacká M, Priscu JC, Basagic HJ, Fountain AG, Wall DH, Virginia RA, Greenwood MC (2012) Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica. Geomorphology 155–156:102–111. doi:10.1016/j.geomorph.2011.12.009 Google Scholar
  47. Sabbe K, Verleyen E, Hodgson DA, Vanhoutte K, Vyverman W (2003) Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarct Sci 15:227–248. doi:10.1017/S095410200300124X CrossRefGoogle Scholar
  48. Saunders KM, Hodgson DA, McMinn A (2009) Quantitative relationships between benthic diatom assemblages and water chemistry in Macquarie Island lakes and their potential for reconstructing past environmental changes. Antarct Sci 21:35–49. doi:10.1017/S0954102008001442 CrossRefGoogle Scholar
  49. Saunders KM, Hodgson DA, McMurtrie S, Grosjean M (2015) A diatom–conductivity transfer function for reconstructing past changes in the Southern Hemisphere westerly winds over the Southern Ocean. J Quat Sci 30:464–477. doi:10.1002/jqs.2788 CrossRefGoogle Scholar
  50. Sokol ER, Herbold CW, Lee CK, Cary SC, Barrett JE (2013) Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere 4:art136. doi: 10.1890/ES13-00136.1
  51. Spaulding SA, McKnight DM, Stoermer EF, Doran PT (1997) Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. J Paleolimnol 17:403–420. doi:10.1023/A:1007931329881 CrossRefGoogle Scholar
  52. Spaulding S, Van de Vijver B, Hodgson D, McKnight D, Verleyen E, Stanish L (2010) Diatoms as indicators of environmental change in Antarctic and subantarctic freshwaters. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 267–286CrossRefGoogle Scholar
  53. Speirs JC, Steinhoff DF, McGowan HA, Bromwich DH, Monaghan AJ (2010) Foehn winds in the McMurdo Dry Valleys, Antarctica: the origin of extreme warming events. J Climate 23:3577–3598. doi:10.1175/2010JCLI3382.1 CrossRefGoogle Scholar
  54. Stanish LF, Nemergut DR, McKnight DM (2011) Hydrologic processes influence diatom community composition in Dry Valley streams. J N Am Benthol Soc 30:1057–1073. doi:10.1899/11-008.1 CrossRefGoogle Scholar
  55. Stanish LF, Kohler TJ, Esposito RMM, Simmons BL, Nielsen UN, Wall DH, Nemergut DR, McKnight DM (2012) Extreme streams: flow intermittency as a control on diatom communities in meltwater streams in the McMurdo Dry Valleys, Antarctica. Can J Fish Aquat Sci 69:1405–1419. doi:10.1139/f2012-022 CrossRefGoogle Scholar
  56. Stanish LF, Bagshaw EA, McKnight DM, Fountain AG, Tranter M (2013a) Environmental factors influencing diatom communities in Antarctic cryoconite holes. Environ Res Lett 8:045006. doi:10.1088/1748-9326/8/4/045006 CrossRefGoogle Scholar
  57. Stanish LF, O’Neill SP, Gonzalez A, Legg TM, Knelman J, McKnight DM, Spaulding SA, Nemergut DR (2013b) Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams. Environ Microbiol 15:1115–1131. doi:10.1111/j.1462-2920.2012.02872.x CrossRefPubMedGoogle Scholar
  58. Steinman A, Lamberti GA, Leavitt PR (1996) Biomass and pigments of benthic algae. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology, 2nd edn. Academic Press, San Diego, pp 357–379Google Scholar
  59. Van de Vijver B, Beyens L (1999) Freshwater diatoms from Ile de la Possession (Crozet Archipelago, sub-Antarctica): an ecological assessment. Polar Biol 22:178–188. doi:10.1007/s003000050408 CrossRefGoogle Scholar
  60. Vanormelingen P, Verleyen E, Vyverman W (2008) The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodivers Conserv 17:393–405. doi:10.1007/s10531-007-9257-4 CrossRefGoogle Scholar
  61. Vanormelingen P, Vyverman W, De Bock D, Van der Gucht K, Meester LD (2009) Local genetic adaptation to grazing pressure of the green alga Desmodesmus armatus in a strongly connected pond system. Limnol Oceanogr 54:503–511. doi:10.4319/lo.2009.54.2.0503 CrossRefGoogle Scholar
  62. Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer, New York, p 498CrossRefGoogle Scholar
  63. Verleyen E, Hodgson DA, Vyverman W, Roberts D, McMinn A, Vanhoutte K, Sabbe K (2003) Modelling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes. J Paleolimnol 30:195–215. doi:10.1023/A:1025570904093 CrossRefGoogle Scholar
  64. Verleyen E, Vyverman W, Sterken M, Hodgson DA, De Wever A, Juggins S, Van de Vijver B, Jones VJ, Vanormelingen P, Roberts D, Flower R, Kilroy C, Sabbe K (2009) The importance of dispersal related and local factors in shaping the taxonomic structure of diatom metacommunities. Oikos 118:1239–1249. doi:10.1111/j.1600-0706.2009.17575.x CrossRefGoogle Scholar
  65. Verleyen E, Hodgson DA, Gibson J et al (2012) Chemical limnology in coastal East Antarctic lakes: monitoring future climate change in centres of endemism and biodiversity. Antarct Sci 24:23–33. doi:10.1017/S0954102011000642 CrossRefGoogle Scholar
  66. Vincent WF, Downes MT, Castenholtz RW, Howard-Williams C (1993) Community structure and pigment organization of cyanobacterial-dominated microbial mats in Antarctica. Eur J Phycol 28:213–231. doi:10.1080/09670269300650321 CrossRefGoogle Scholar
  67. Vyverman W, Verleyen E, Sabbe K, Vanhoutte K, Sterken M, Hodgson DA, Mann DG, Juggins S, Van de Vijver B, Jones V, Flower R, Roberts D, Chepurnov VA, Kilroy C, Vanormelingen P, De Wever A (2007) Historical processes constrain patterns in global diatom diversity. Ecology 88:1924–1931. doi:10.1890/06-1564.1 CrossRefPubMedGoogle Scholar
  68. Vyverman W, Verleyen E, Wilmotte A et al (2010) Evidence for widespread endemism among Antarctic microorganisms. Polar Sci 4:103–113. doi:10.1016/j.polar.2010.03.006 CrossRefGoogle Scholar
  69. Welch KA, Lyons WB, Whisner C, Gardner CB, Gooseff MN, McKnight DM, Priscu JC (2010) Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarct Sci 22:662–672. doi:10.1017/S0954102010000702 CrossRefGoogle Scholar
  70. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992. doi:10.4319/lo.1994.39.8.1985 CrossRefGoogle Scholar
  71. West W, West GS (1911) Freshwater algae. British Antarctic Expedition (1907–1909) Science Report. Biology 1:263–298Google Scholar
  72. Whittaker TE, Hall BL, Hendy CH, Spaulding SA (2008) Holocene depositional environments and surface-level changes at Lake Fryxell, Antarctica. Holocene 18:775–786. doi:10.1177/0959683608091797 CrossRefGoogle Scholar
  73. Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts I. Iconographia Diatomologica 7:1–925Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Sakaeva
    • 1
  • E. R. Sokol
    • 1
  • T. J. Kohler
    • 2
  • L. F. Stanish
    • 1
  • S. A. Spaulding
    • 1
  • A. Howkins
    • 3
  • K. A. Welch
    • 4
  • W. B. Lyons
    • 4
  • J. E. Barrett
    • 5
  • D. M. McKnight
    • 1
  1. 1.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  2. 2.Department of Ecology, Faculty of ScienceCharles University in PraguePragueCzech Republic
  3. 3.Department of HistoryColorado State UniversityFort CollinsUSA
  4. 4.Byrd Polar Research CenterThe Ohio State UniversityColumbusUSA
  5. 5.Department of Biological SciencesVirginia TechBlacksburgUSA

Personalised recommendations