Polar Biology

, Volume 39, Issue 9, pp 1627–1641 | Cite as

Plasticity in foraging behaviour and diet buffers effects of inter-annual environmental differences on chick growth and survival in southern rockhopper penguins Eudyptes chrysocome chrysocome

  • Nina DehnhardEmail author
  • Katrin Ludynia
  • Juan F. Masello
  • Christian C. Voigt
  • Rona A. R. McGill
  • Petra Quillfeldt
Original Paper


In marine ecosystems, primary productivity and consequently food availability for higher trophic levels are often strongly affected by the water temperature. Thus, differences in sea surface temperatures (SST) may lead to differences in the diet composition of predators, but this link is still unknown in many species. By combining GPS tracking and dive analyses on chick-rearing southern rockhopper penguins (Eudyptes chrysocome chrysocome) with stable isotope analyses and monitoring of chick growth rates and chick survival, we here attempted a comprehensive assessment of the effects of inter-annual environmental variability as indicated by SST and chlorophyll a (reflecting primary productivity) data. Inter-annual differences in environmental variables around our study colony on New Island, Falkland/Malvinas Islands, contradicted the general expectation, with higher chlorophyll a concentrations coinciding with higher spring SST in 2010/2011 compared to 2009/2010. Penguins foraged further away from the colony during guard and crèche in 2010/2011 compared to 2009/2010, while performing deeper dives in 2009/2010. Stable isotope mixing models suggested a crustacean-dominated chick diet in 2009/2010, compared to a mixture of squid and fish in 2010/2011. These differences in foraging behaviour and diet, however, had no consequences for chick growth rates or chick survival and thus had no apparent effect on population trajectories. Potentially, environmental conditions in both years could still be seen as favourable compared to other years and breeding sites, enabling the parental birds to buffer the environmental differences by plastic foraging behaviour.


Chlorophyll a GPS logger Sea surface temperature Stable isotope analysis Stable isotope mixing model 



We are grateful to the New Island Conservation Trust for permission to work on the island. We thank Ian, Maria and Georgina Strange, Charles Swift, George Guille and Riek van Noordwijk for their support during the field seasons. Thanks also to Nick Rendell, Falkland Islands Government, for logistic help. Martin Wikelski provided the funding for the GPS data loggers and Thomas Mattern a script to calculate dive parameters. Thanks to Gilles Lepoint for carrying out the isotope analyses at the Laboratory of Oceanology, University of Liège. We thank Karin Sörgel and Anja Luckner for isotope analyses at the IZW. We would like to thank Maud Poisbleau and Anja Matuszak for discussing ideas and methods, and Norman Ratcliffe as well as two anonymous reviewers for helpful comments on an earlier version of this manuscript. This study was funded by a grant provided by the Deutsche Forschungsgemeinschaft DFG (Qu 148/1-ff) and OTEP (Overseas Territories environment Programme: FAL 603). All work was approved by the Falkland Islands Government (Environmental Planning Office).

Supplementary material

300_2015_1887_MOESM1_ESM.docx (150 kb)
Supplementary material 1 (DOCX 150 kb)
300_2015_1887_MOESM2_ESM.docx (154 kb)
Supplementary material 2 (DOCX 153 kb)


  1. Anderson DJ (1989) Differential responses of boobies and other seabirds in the Galápagos to the 1986–87 El Niño-Southern Oscillation event. Mar Ecol Prog Ser 52:209–216. doi: 10.3354/meps052209 CrossRefGoogle Scholar
  2. Angeler DG, Viedma O, Moreno JM (2009) Statistical performance and information content of time lag analysis and redundancy analysis in time series modeling. Ecology 90:3245–3257. doi: 10.1890/07-0391.1 CrossRefPubMedGoogle Scholar
  3. Arkhipkin AI, Grzebielec R, Sirota AM, Remeslo AV, Polishchuk IA, Middleton DAJ (2004) The influence of seasonal environmental changes on ontogenetic migrations of the squid Loligo gahi on the Falkland shelf. Fish Oceanogr 13:1–9. doi: 10.1046/j.1365-2419.2003.00269.x CrossRefGoogle Scholar
  4. Ashmole NP (1971) Seabird ecology and the marine environment. In: Farner DS, King JS, Parkes KC (eds) Avian biology. Academic Press, New York, pp 224–286Google Scholar
  5. Barlow KE, Croxall JP (2002) Seasonal and interannual variation in foraging range and habitat of macaroni penguins Eudyptes chrysolophus at South Georgia. Mar Ecol Prog Ser 232:291–304CrossRefGoogle Scholar
  6. Baylis AMM, Wolfaardt AC, Crofts S, Pistorius PA, Ratcliffe N (2013) Increasing trend in the number of southern rockhopper penguins (Eudyptes c. chrysocome) breeding at the Falkland Islands. Polar Biol 36:1007–1018. doi: 10.1007/s00300-013-1324-6 CrossRefGoogle Scholar
  7. Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20CrossRefGoogle Scholar
  8. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755. doi: 10.1038/nature05317 CrossRefPubMedGoogle Scholar
  9. Birt VL, Birt TP, Goulet D, Cairns DK, Montevecchi WA (1987) Ashmole’s Halo—direct evidence for prey depletion by a seabird. Mar Ecol Prog Ser 40:205–208CrossRefGoogle Scholar
  10. Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Ann Rev Ecol Evol Syst 42:411–440. doi: 10.1146/annurev-ecolsys-102209-144726 CrossRefGoogle Scholar
  11. Boersma PD, Stokes DL, Strange IJ (2002) Applying ecology to conservation: tracking breeding penguins at New Island South Reserve, Falkland Islands. Aquat Conserv Mar Freshw Ecosyst 12:63–74. doi: 10.1002/aqc.477 CrossRefGoogle Scholar
  12. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi: 10.1016/j.ecolmodel.2006.03.017 CrossRefGoogle Scholar
  13. Canale CI, Henry PY (2010) Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Clim Res 43:135–147CrossRefGoogle Scholar
  14. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453. doi: 10.1111/j.1365-2664.2009.01620.x CrossRefGoogle Scholar
  15. Clausen AP, Pütz K (2002) Recent trends in diet composition and productivity of gentoo, Magellanic and rockhopper penguins in the Falkland Islands. Aquat Conserv Mar Freshw Ecosyst 12:51–61. doi: 10.1002/aqc.476 CrossRefGoogle Scholar
  16. Collins SL, Micheli F, Hartt L (2000) A method to determine rates and patterns of variability in ecological communities. Oikos 91:285–293. doi: 10.1034/j.1600-0706.2000.910209.x CrossRefGoogle Scholar
  17. Cunningham DM, Moors PJ (1994) The decline of rockhopper penguins Eudyptes chrysocome at Campbell Island, Southern Ocean and the influence of rising sea temperatures. Emu 94:27–36CrossRefGoogle Scholar
  18. Dehnhard N, Voigt CC, Poisbleau M, Demongin L, Quillfeldt P (2011) Stable isotopes in southern rockhopper penguins: foraging areas and sexual differences in the non-breeding period. Polar Biol 34:1763–1773. doi: 10.1007/s00300-011-1026-x CrossRefGoogle Scholar
  19. Dehnhard N, Ludynia K, Poisbleau M, Demongin L, Quillfeldt P (2013a) Good days, bad days: wind as a driver of foraging success in a flightless seabird, the southern rockhopper penguin. PLoS One 8:e79487. doi: 10.1371/journal.pone.0079487 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dehnhard N, Poisbleau M, Demongin L, Ludynia K, Lecoq M, Masello JF, Quillfeldt P (2013b) Survival of rockhopper penguins in times of global climate change. Aquat Conserv Mar Freshw Ecosyst 23:777–789. doi: 10.1002/aqc.2331 Google Scholar
  21. Dehnhard N, Poisbleau M, Demongin L, Ludynia K, Quillfeldt P (2014) High juvenile annual survival probabilities in southern rockhopper penguins Eudyptes chrysocome are independent of individual fledging traits. Ibis 156:548–560. doi: 10.1111/ibi.12167 CrossRefGoogle Scholar
  22. Dehnhard N, Eens M, Demongin L, Quillfeldt P, Poisbleau M (2015a) Individual consistency and phenotypic plasticity in rockhopper penguins: female but not male body mass links environmental conditions to reproductive investment. PLoS One 10:e0128776. doi: 10.1371/journal.pone.0128776 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dehnhard N, Eens M, Demongin L, Quillfeldt P, Suri D, Poisbleau M (2015b) Limited individual phenotypic plasticity in the timing of and investment into egg laying in southern rockhopper penguins under climate change. Mar Ecol Prog Ser 524:269–281. doi: 10.3354/meps11154 CrossRefGoogle Scholar
  24. Demongin L, Poisbleau M, Raya Rey A, Schiavini A, Quillfeldt P, Eens M, Strange IJ (2010a) Geographical variation in egg size dimorphism in rockhopper penguins. Polar Biol 33:469–476. doi: 10.1007/s00300-009-0722-2 CrossRefGoogle Scholar
  25. Demongin L, Poisbleau M, Strange IJ, Quillfeldt P (2010b) Effects of severe rains on mortality of southern rockhopper penguin (Eudyptes chrysocome) chicks and its impact on the breeding success. Ornitol Neotrop 21:439–443Google Scholar
  26. Fieberg J, Kochanny CO (2005) Quantifying home-range overlap: the importance of the utilization distribution. J Wildl Manag 69:1346–1359. doi: 10.2193/0022-541X(2005)69[1346:QHOTIO]2.0.CO;2 CrossRefGoogle Scholar
  27. Frederiksen M, Edwards M, Richardson AJ, Halliday HC, Wanless S (2006) From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Anim Ecol 75:1259–1268CrossRefPubMedGoogle Scholar
  28. Gibbons MJ, Barange M, Pillar SC (1991) Vertical migration and feeding of Euphausia lucens (Euphausiacea) in the Southern Benguela. J Plankt Res 13:473–486. doi: 10.1093/plankt/13.3.473 CrossRefGoogle Scholar
  29. Guinard E, Weimerskirch H, Jouventin P (1998) Population changes and demography of the northern rockhopper penguin on Amsterdam and Saint Paul Islands. Col Waterbirds 21:222–228CrossRefGoogle Scholar
  30. Gwynn AM (1953) The egg-laying and incubation periods of rockhopper, macaroni and gentoo penguins. ANARE Rep Ser B 1:1–29Google Scholar
  31. Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344CrossRefPubMedGoogle Scholar
  32. Heath RGM, Randall RM (1985) Growth of jackass penguin chicks (Spheniscus demersus) hand reared on different diets. J Zool 205:91–105CrossRefGoogle Scholar
  33. Hilton GM, Thompson DR, Sagar PM, Cuthbert RJ, Cherel Y, Bury SJ (2006) A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob Change Biol 12:611–625. doi: 10.1111/j.1365-2486.2006.01130.x CrossRefGoogle Scholar
  34. Hull CL (2000) Comparative diving behaviour and segregation of the marine habitat by breeding royal penguins, Eudyptes schlegeli, and eastern rockhopper penguins, Eudyptes chrysocome filholi, at Macquarie Island. Can J Zool 78:333–345CrossRefGoogle Scholar
  35. Kato A, Watanuki Y, Nishiumi I, Kuroki M, Shaughnessy P, Naito Y (2000) Variation in foraging and parental behavior of king cormorants. Auk 117:718–730. doi: 10.1642/0004-8038(2000)117[0718:VIFAPB]2.0.CO;2 CrossRefGoogle Scholar
  36. Lee Cruz L, McGill RAR, Goodman SJ, Hamer KC (2012) Stable isotope ratios of a tropical marine predator: confounding effects of nutritional status during growth. Mar Biol 159:873–880. doi: 10.1007/s00227-011-1864-7 CrossRefGoogle Scholar
  37. Ludynia K, Dehnhard N, Poisbleau M, Demongin L, Masello JF, Quillfeldt P (2012) Evaluating the impact of handling and logger attachment on foraging parameters and physiology in southern rockhopper penguins. PLoS One 7:e50429. doi: 10.1371/journal.pone.0050429 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ludynia K, Dehnhard N, Poisbleau M, Demongin L, Masello JF, Voigt CC, Quillfeldt P (2013) Sexual segregation in rockhopper penguins during incubation. Anim Behav 85:255–267. doi: 10.1016/j.anbehav.2012.11.001 CrossRefGoogle Scholar
  39. MacAulay F (2015) Sea Lion Field discovery and appraisal: a turning point for the North Falkland Basin. Pet Geosci 21:111–124. doi: 10.1144/petgeo2014-044 CrossRefGoogle Scholar
  40. Masello JF, Mundry R, Poisbleau M, Demongin L, Voigt CC, Wikelski M, Quillfeldt P (2010) Diving seabirds share foraging space and time within and among species. Ecosphere 1:19. doi: 10.1890/ES10-00103.1 CrossRefGoogle Scholar
  41. Mattern T, Ellenberg U, Houston DM, Davis LS (2007) Consistent foraging routes and benthic foraging behaviour in yellow-eyed penguins. Mar Ecol Prog Ser 343:295–306. doi: 10.3354/meps06954 CrossRefGoogle Scholar
  42. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  43. Morrison KW, Bury SJ, Thompson DR (2014) Higher trophic level prey does not represent a higher quality diet in a threatened seabird: implications for relating population dynamics to diet shifts inferred from stable isotopes. Mar Biol. doi: 10.1007/s00227-014-2502-y Google Scholar
  44. Morrison KW, Battley PF, Sagar PM, Thompson DR (2015) Population dynamics of eastern rockhopper penguins on Campbell Island in relation to sea surface temperature 1942–2012: current warming hiatus pauses a long-term decline. Polar Biol 38:163–177. doi: 10.1007/s00300-014-1575-x CrossRefGoogle Scholar
  45. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Method Ecol Evol 4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  46. Nicol S, James A, Pitcher G (1987) A first record of daytime surface swarming by Euphausia lucens in the Southern Benguela region. Mar Biol 94:7–10. doi: 10.1007/BF00392893 CrossRefGoogle Scholar
  47. Orians G, Pearson N (1979) On the theory of central place foraging. In: Horn DH, Mitchell R, Stairs GR (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 155–177Google Scholar
  48. Owens N (1987) Natural variations in 15N in the marine environment. Adv Mar Biol 24:389–451CrossRefGoogle Scholar
  49. Parnell A, Jackson A (2013) SIAR: stable isotope analysis in R. R-package version 4.2.
  50. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 31-111Google Scholar
  51. Poisbleau M, Demongin L, Strange IJ, Otley H, Quillfeldt P (2008) Aspects of the breeding biology of the southern rockhopper penguin Eudyptes c. chrysocome and new consideration on the intrinsic capacity of the A-egg. Polar Biol 31:925–932. doi: 10.1007/s00300-008-0431-2 CrossRefGoogle Scholar
  52. Poisbleau M, Demongin L, van Noordwijk HJ, Strange IJ, Quillfeldt P (2010) Sexual dimorphism and use of morphological measurements to sex adults, immatures and chicks of rockhopper penguins. Ardea 98:217–227. doi: 10.5253/078.098.0212 CrossRefGoogle Scholar
  53. Pütz K, Clausen AP, Huin N, Croxall JP (2003) Re-evaluation of historical rockhopper penguin population data in the Falkland Islands. Waterbirds 26:169–175CrossRefGoogle Scholar
  54. Pütz K, Raya Rey A, Huin N, Schiavini A, Pütz A, Lüthi BH (2006) Diving characteristics of southern rockhopper penguins (Eudyptes c. chrysocome) in the Southwest Atlantic. Mar Biol 149:125–137. doi: 10.1007/s00227-005-0179-y CrossRefGoogle Scholar
  55. Pütz K, Raya Rey A, Otley H (2013) Southern rockhopper penguin. In: Borboroglu PG, Boersma PD (eds) Penguins—natural history and conservation. University of Washington Press, Seattle, pp 113–129Google Scholar
  56. Quillfeldt P, Ekschmitt K, Brickle P, McGill RAR, Wolters V, Dehnhard N, Masello JF (2015) Variability of higher trophic level stable isotope data in space and time—a case study in a marine ecosystem. Rapid Commun Mass Spectrom 29:667–674. doi: 10.1002/rcm.7145 CrossRefPubMedGoogle Scholar
  57. Quintana F, Wilson R, Dell’Arciprete P, Shepard E, Laich AG (2011) Women from Venus, men from Mars: inter-sex foraging differences in the imperial cormorant Phalacrocorax atriceps a colonial seabird. Oikos 120:350–358. doi: 10.1111/j.1600-0706.2010.18387.x CrossRefGoogle Scholar
  58. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  59. Ramírez FC, Dato C (1983) Seasonal changes in population structure and gonadal development of three Euphausiid species. Oceanol Acta 6:427–433Google Scholar
  60. Ratcliffe N, Takahashi A, O’Sullivan C, Adlard S, Trathan PN, Harris MP, Wanless S (2013) The roles of sex, mass and individual specialisation in partitioning foraging-depth niches of a pursuit-diving predator. PLoS One 8:e79107. doi: 10.1371/journal.pone.0079107 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Raya Rey A, Schiavini A (2005) Inter-annual variation in the diet of female southern rockhopper penguin (Eudyptes chrysocome chrysocome) at Tierra del Fuego. Polar Biol 28:132–141. doi: 10.1007/s00300-004-0668-3 CrossRefGoogle Scholar
  62. Raya Rey A, Trathan P, Schiavini A (2007) Inter-annual variation in provisioning behaviour of southern rockhopper penguins Eudyptes chrysocome chrysocome at Staten Island, Argentina. Ibis 149:826–835. doi: 10.1111/j.1474-919X.2007.00718.x CrossRefGoogle Scholar
  63. Raya Rey A, Pütz K, Luna-Jorquera G, Lüthi BH, Schiavini A (2009) Diving patterns of breeding female rockhopper penguins (Eudyptes chrysocome): Noir Island, Chile. Polar Biol 32:561–568. doi: 10.1007/s00300-008-0550-9 CrossRefGoogle Scholar
  64. Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–1612. doi: 10.1126/science.1100958 CrossRefPubMedGoogle Scholar
  65. Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–263. doi: 10.1016/j.tree.2004.03.017 CrossRefPubMedGoogle Scholar
  66. Sabatini ME, Akselman R, Reta R, Negri RM, Lutz VA, Silva RI, Segura V, Gil MN, Santinelli NH, Sastre AV, Daponte MC, Antacli J (2012) Spring plankton communities in the southern Patagonian shelf: hydrography, mesozooplankton patterns and trophic relationships. J Mar Syst 94:33–51CrossRefGoogle Scholar
  67. Saraux C, Viblanc VA, Hanuise N, Le Maho Y, Le Bohec C (2011) Effects of individual pre-fledging traits and environmental conditions on return patterns in juvenile king penguins. PLoS One 6:e20407. doi: 10.1371/journal.pone.0020407 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656. doi: 10.1016/j.tree.2003.09.002 CrossRefGoogle Scholar
  69. Schiavini A, Raya Rey A (2004) Long days, long trips: foraging ecology of female rockhopper penguins Eudyptes chrysocome chrysocome at Tierra del Fuego. Mar Ecol Prog Ser 275:251–262. doi: 10.3354/meps275251 CrossRefGoogle Scholar
  70. Schreiber RW, Schreiber EA (1984) Central Pacific seabirds and the El Niño southern oscillation: 1982 to 1983 perspectives. Science 225:713–716. doi: 10.1126/science.225.4663.713 CrossRefPubMedGoogle Scholar
  71. Sears J, Hatch SA, O’Brien DM (2009) Disentangling effects of growth and nutritional status on seabird stable isotope ratios. Oecologia 159:41–48. doi: 10.1007/s00442-008-1199-3 CrossRefPubMedGoogle Scholar
  72. Siegel V (2000) Krill (Euphausiacea) life history and aspects of population dynamics. Can J Fish Aquat Sci 57:130–150. doi: 10.1139/f00-183 CrossRefGoogle Scholar
  73. Smetacek V, Passow U (1990) Spring bloom initiation and Sverdrup’s critical-depth model. Limnol Oceanogr 35:228–234. doi: 10.4319/lo.1990.35.1.0228 CrossRefGoogle Scholar
  74. St. Clair CC, St. Clair RC (1996) Causes and consequences of egg loss in rockhopper penguins, Eudyptes chrysocome. Oikos 77:459–466CrossRefGoogle Scholar
  75. Strange IJ (1982) Breeding ecology of the rockhopper penguin (Eudyptes crestatus) in the Falkland Islands. Gerfaut 72:137–188Google Scholar
  76. Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Conseil 18:287–295. doi: 10.1093/icesjms/18.3.287 CrossRefGoogle Scholar
  77. Tremblay Y, Cherel Y (2003) Geographic variation in the foraging behaviour, diet and chick growth of rockhopper penguins. Mar Ecol Prog Ser 251:279–297. doi: 10.3354/meps251279 CrossRefGoogle Scholar
  78. Tremblay Y, Cherel Y (2005) Spatial and temporal variation in the provisioning behaviour of female rockhopper penguins Eudyptes chrysocome filholi. J Avian Biol 36:135–145. doi: 10.1111/j.0908-8857.2005.03309.x CrossRefGoogle Scholar
  79. Vargas FH, Harrison S, Rea S, Macdonald DW (2006) Biological effects of El Niño on the Galapagos penguin. Biol Conserv 127:107–114. doi: 10.1016/j.biocon.2005.08.001 CrossRefGoogle Scholar
  80. Waluda CM, Rodhouse PG, Trathan PN, Pierce GJ (2001) Remotely sensed mesoscale oceanography and the distribution of Illex argentinus in the South Atlantic. Fish Oceanogr 10:207–216. doi: 10.1046/j.1365-2419.2001.00165.x CrossRefGoogle Scholar
  81. Warham J (1975) The crested penguins. In: Stonehouse B (ed) The biology of penguins. The Macmillan Press, London, pp 189–269CrossRefGoogle Scholar
  82. Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep Sea Res Part II 54:211–223. doi: 10.1016/j.dsr2.2006.11.013 CrossRefGoogle Scholar
  83. Wilson RP, Wilson M-PT (1990) Foraging ecology of breeding Spheniscus penguins. In: Davis LS, Darby JT (eds) Penguin biology, 1st edn. Academic Press, London, pp 181–206Google Scholar
  84. Wilson RP, Pütz K, Peters G, Culik B, Scolaro JA, Charrassin JB, Ropert-Coudert Y (1997) Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl Soc Bull 25:101–106Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nina Dehnhard
    • 1
    • 2
    • 3
    Email author
  • Katrin Ludynia
    • 1
    • 2
    • 4
  • Juan F. Masello
    • 1
    • 2
    • 7
  • Christian C. Voigt
    • 5
  • Rona A. R. McGill
    • 6
  • Petra Quillfeldt
    • 1
    • 2
    • 7
  1. 1.Department of Migration and Immuno-EcologyMax Planck Institute for OrnithologyRadolfzellGermany
  2. 2.Department of BiologyUniversity of KonstanzConstanceGermany
  3. 3.Department of Biology – EthologyUniversity of AntwerpAntwerp (Wilrijk)Belgium
  4. 4.Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
  5. 5.Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
  6. 6.Scottish Universities Environmental Research CentreGlasgowUK
  7. 7.Department of Animal Ecology and SystematicsJustus-Liebig University GießenGiessenGermany

Personalised recommendations