Advertisement

Polar Biology

, Volume 39, Issue 8, pp 1479–1489 | Cite as

Spatiotemporal variation in home range size of female polar bears and correlations with individual contaminant load

  • Floris M. van Beest
  • Jon Aars
  • Heli Routti
  • Elisabeth Lie
  • Magnus Andersen
  • Viola Pavlova
  • Christian Sonne
  • Jacob Nabe-Nielsen
  • Rune Dietz
Original Paper

Abstract

We quantified the effect of multiple environmental and biological determinants on variation in home range size across multiple spatial (total-home range–core-home range areas) and temporal (seasonal and all seasons combined) scales for 22 adult female polar bears (Ursus maritimus) from Svalbard, Norway (2003–2011). We also evaluated if considering spatiotemporal variation in home range size and location is valuable to assess variation in concentrations of persistent organic pollutants (POPs). In general, home range size was negatively related to the proportion of land within the home range and sea ice concentration, but positively to snow depth. However, effects typically differed between seasons and total, and core-home range size, providing evidence that home range size is scale dependent in this large Arctic mammal. Females accompanied by dependent offspring had smaller home ranges during the breeding season and spring compared to solitary females, while age and body mass did not explain variation in home range size. Correlations between POP concentration and space use were marginally significant, but consistently stronger at fine spatiotemporal resolutions (i.e. core-home ranges during the breeding season) compared to coarse resolution (i.e. total-home ranges over the entire year). We also found that the geographic location of the home range is a stronger ecological correlate of POP concentration than home range size. To improve our understanding of the relation between POPs and animal space use, we recommend increasing the temporal frequency of POP measurements to evaluate how POP concentrations vary during a year and across areas.

Keywords

Environmental pollutants Home range Movement Scale Sea ice Ursus maritimus 

Notes

Acknowledgments

A large number of people were involved in preparing this study and we gratefully acknowledge their support. Specifically, we want to thank Katharina B. Løken at NMBU, for analysing the blood samples for POPs concentrations, the crew on RV Lance, the pilots and mechanics from AIRLIFT and The Governor of Svalbard. Funding for this research was provided by the Norwegian Polar Institute, Norwegian Ministry of the Environment and the Danish Cooperation for Environment in the Arctic program (DANCEA). We also acknowledge support from World Wildlife Fund for collaring of adult females. The Editor and three anonymous reviewers provided constructive feedback on a previous draft of the manuscript.

References

  1. Amstrup SC, Durner GM, Stirling I et al (2000) Movements and distribution of polar bears in the Beaufort Sea. Can J Zool 78:948–966. doi: 10.1139/cjz-78-6-948 CrossRefGoogle Scholar
  2. Bernhoft A, Wiig O, Skaare JU (1997) Organochlorines in polar bears (Ursus maritimus) at Svalbard. Environ Pollut 95:159–175. doi: 10.1016/S0269-7491(96)00122-4 CrossRefPubMedGoogle Scholar
  3. Börger L, Dalziel BD, Fryxell JM (2008) Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol Lett 11:637–650. doi: 10.1111/j.1461-0248.2008.01182.x CrossRefPubMedGoogle Scholar
  4. Brown TM, Luque S, Sjare B et al (2014) Satellite telemetry informs PCB source apportionment in a mobile, high trophic level marine mammal: the ringed seal (Pusa hispida). Environ Sci Technol 48:13110–13119. doi: 10.1021/es504010q CrossRefPubMedGoogle Scholar
  5. Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2012) Movement upscaled—the importance of individual foraging movement for community response to habitat loss. Ecography 35:436–445CrossRefGoogle Scholar
  6. Buck RC, Franklin J, Berger U et al (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541. doi: 10.1002/ieam.258 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  8. Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 24:346–352CrossRefGoogle Scholar
  9. Bytingsvik J, Lie E, Aars J et al (2012a) PCBs and OH-PCBs in polar bear mother–cub pairs: a comparative study based on plasma levels in 1998 and 2008. Sci Total Environ 417–418:117–128. doi: 10.1016/j.scitotenv.2011.12.033 CrossRefPubMedGoogle Scholar
  10. Bytingsvik J, van Leeuwen SPJ, Hamers T et al (2012b) Perfluoroalkyl substances in polar bear mother–cub pairs: a comparative study based on plasma levels from 1998 and 2008. Environ Int 49:92–99. doi: 10.1016/j.envint.2012.08.004 CrossRefPubMedGoogle Scholar
  11. Bytingsvik J, Simon E, Leonards PEG et al (2013) Transthyretin-binding activity of contaminants in blood from polar bear (Ursus maritimus) cubs. Environ Sci Technol 47:4778–4786. doi: 10.1021/es305160v CrossRefPubMedGoogle Scholar
  12. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519CrossRefGoogle Scholar
  13. Christensen-Dalsgaard SN, Aars J, Andersen M et al (2010) Accuracy and precision in estimation of age of Norwegian Arctic polar bears (Ursus maritimus) using dental cementum layers from known-age individuals. Polar Biol 33:589–597. doi: 10.1007/s00300-009-0734-y CrossRefGoogle Scholar
  14. Derocher AE, Wiig Ø (2002) Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. J Zool 256:343–349. doi: 10.1017/S0952836902000377 CrossRefGoogle Scholar
  15. Derocher AE, Wolkers H, Colborn T et al (2003) Contaminants in Svalbard polar bear samples archived since 1967 and possible population level effects. Sci Total Environ 301:163–174. doi: 10.1016/S0048-9697(02)00303-0 CrossRefPubMedGoogle Scholar
  16. Derocher AE, Lunn NJ, Stirling I (2004) Polar bears in a warming climate. Integr Comp Biol 44:163–176. doi: 10.1093/icb/44.2.163 CrossRefPubMedGoogle Scholar
  17. Dietz R, Rigét FF, Sonne C et al (2013) Three decades (1983–2010) of contaminant trends in East Greenland polar bears (Ursus maritimus). Part 1: legacy organochlorine contaminants. Environ Int 59:485–493. doi: 10.1016/j.envint.2012.09.004 CrossRefPubMedGoogle Scholar
  18. Durner GM, Douglas DC, Nielson RM et al (2009) Predicting 21st-century polar bear habitat distribution from global climate models. Ecol Monogr 79:25–58. doi: 10.1890/07-2089.1 CrossRefGoogle Scholar
  19. Elliott JE, Morrissey CA, Henny CJ et al (2007) Satellite telemetry and prey sampling reveal contaminant sources to pacific northwest ospreys. Ecol Appl 17:1223–1233. doi: 10.1890/06-1213 CrossRefPubMedGoogle Scholar
  20. Ferguson SH, Taylor MK, Born EW et al (1999) Determinants of home range size for polar bears (Ursus maritimus). Ecol Lett 2:311–318CrossRefGoogle Scholar
  21. Forrester T, Casady D, Wittmer H (2015) Home sweet home: fitness consequences of site familiarity in female black-tailed deer. Behav Ecol Sociobiol 69:603–612. doi: 10.1007/s00265-014-1871-z CrossRefGoogle Scholar
  22. Freitas C, Kovacs KM, Andersen M et al (2012) Importance of fast ice and glacier fronts for female polar bears and their cubs during spring in Svalbard, Norway. Mar Ecol Prog Ser 447:289–304. doi: 10.3354/meps09516 CrossRefGoogle Scholar
  23. Fryxell JM, Hazell M, Borger L et al (2008) Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc Natl Acad Sci USA 105:19114–19119. doi: 10.1073/pnas.0801737105 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Furgal CM, Innes S, Kovacs KM (1996) Characteristics of ringed seal, Phoca hispida, subnivean structures and breeding habitat and their effects on predation. Can J Zool 74:858–874. doi: 10.1139/z96-100 CrossRefGoogle Scholar
  25. Gurarie E, Ovaskainen O (2011) Characteristic spatial and temporal scales unify models of animal movement. Am Nat 178:113–123. doi: 10.1086/660285 CrossRefPubMedGoogle Scholar
  26. Harestad AS, Bunnell FL (1979) Home range and body-weight—a reevaluation. Ecology 60:389–402CrossRefGoogle Scholar
  27. Huntington HP (2009) A preliminary assessment of threats to Arctic marine mammals and their conservation in the coming decades. Mar Policy 33:77–82. doi: 10.1016/j.marpol.2008.04.003 CrossRefGoogle Scholar
  28. Kernohan BJ, Gitzen RA, Millspaugh JJ (2001) Analysis of animal space use and movements. In: Millspaugh JJ, Marzluff JM (eds) Radio tracking and animal populations. Academic Press, San Diego, pp 126–164Google Scholar
  29. Laidre KL, Born EW, Gurarie E et al (2013) Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus). Proc R Soc B Biol Sci 280:20122371. doi: 10.1098/rspb.2012.2371 CrossRefGoogle Scholar
  30. Laidre K, Born E, Heagerty P et al (2015) Shifts in female polar bear (Ursus maritimus) habitat use in East Greenland. Polar Biol 38:879–893. doi: 10.1007/s00300-015-1648-5 CrossRefGoogle Scholar
  31. Le S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18CrossRefGoogle Scholar
  32. Letcher RJ, Gebbink WA, Sonne C et al (2009) Bioaccumulation and biotransformation of brominated and chlorinated contaminants and their metabolites in ringed seals (Pusa hispida) and polar bears (Ursus maritimus) from East Greenland. Environ Int 35:1118–1124. doi: 10.1016/j.envint.2009.07.006 CrossRefPubMedGoogle Scholar
  33. Lindstedt SL, Miller BJ, Buskirk SW (1986) Home range, time, and body size in mammals. Ecology 67:413–418CrossRefGoogle Scholar
  34. Loeng H (1991) Features of the physical oceanographic conditions of the Barents Sea. Polar Res 10:5–18. doi: 10.1111/j.1751-8369.1991.tb00630.x CrossRefGoogle Scholar
  35. Lone K, Aars J, Ims RA (2013) Site fidelity of Svalbard polar bears revealed by mark-recapture positions. Polar Biol 36:27–39. doi: 10.1007/s00300-012-1235-y CrossRefGoogle Scholar
  36. Lydersen C, Wolkers H, Severinsen T et al (2002) Blood is a poor substrate for monitoring pollution burdens in phocid seals. Sci Total Environ 292:193–203. doi: 10.1016/S0048-9697(01)01121-4 CrossRefPubMedGoogle Scholar
  37. Martin J, van Moorter B, Revilla E et al (2013) Reciprocal modulation of internal and external factors determines individual movements. J Anim Ecol 82:290–300. doi: 10.1111/j.1365-2656.2012.02038.x CrossRefPubMedGoogle Scholar
  38. Mauritzen M, Derocher AE, Wiig Ø (2001) Space-use strategies of female polar bears in a dynamic sea ice habitat. Can J Zool 79:1704–1713. doi: 10.1139/cjz-79-9-1704 CrossRefGoogle Scholar
  39. Mauritzen M, Derocher AE, Pavlova O, Wiig Ø (2003) Female polar bears, Ursus maritimus, on the Barents Sea drift ice: walking the treadmill. Anim Behav 66:107–113. doi: 10.1006/anbe.2003.2171 CrossRefGoogle Scholar
  40. McKinney MA, Peacock E, Letcher RJ (2009) Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears. Environ Sci Technol 43:4334–4339. doi: 10.1021/es900471g CrossRefPubMedGoogle Scholar
  41. McKinney MA, Letcher RJ, Aars J et al (2011) Flame retardants and legacy contaminants in polar bears from Alaska, Canada, East Greenland and Svalbard, 2005–2008. Environ Int 37:365–374. doi: 10.1016/j.envint.2010.10.008 CrossRefPubMedGoogle Scholar
  42. Muir DCG, Norstrom RJ, Simon M (1988) Organochlorine contaminants in arctic marine food chains: accumulation of specific polychlorinated biphenyls and chlordane-related compounds. Environ Sci Technol 22:1071–1079. doi: 10.1021/es00174a012 CrossRefPubMedGoogle Scholar
  43. Nathan R, Getz WM, Revilla E et al (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 105:19052–19059CrossRefPubMedPubMedCentralGoogle Scholar
  44. Olsen GH, Mauritzen M, Derocher AE et al (2003) Space-use strategy is an important determinant of PCB concentrations in female polar bears in the Barents sea. Environ Sci Technol 37:4919–4924. doi: 10.1021/es034380e CrossRefPubMedGoogle Scholar
  45. Parks EK, Derocher AE, Lunn NJ (2006) Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Can J Zool 84:1281–1294. doi: 10.1139/Z06-115 CrossRefGoogle Scholar
  46. Pilfold NW, Derocher AE, Richardson E (2014) Influence of intraspecific competition on the distribution of a wide-ranging, non-territorial carnivore. Glob Ecol Biogeogr 23:425–435. doi: 10.1111/geb.12112 CrossRefGoogle Scholar
  47. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  48. Ragland JM, Arendt MD, Kucklick JR, Keller JM (2011) Persistent organic pollutants in blood plasma of satellite-tracked adult male loggerhead sea turtles (Caretta caretta). Environ Toxicol Chem 30:1549–1556. doi: 10.1002/etc.540 CrossRefPubMedGoogle Scholar
  49. Schliebe S, Rode KD, Gleason JS et al (2008) Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the Southern Beaufort Sea. Polar Biol 31:999–1010. doi: 10.1007/s00300-008-0439-7 CrossRefGoogle Scholar
  50. Seaman DE, Millspaugh JJ, Kernohan BJ et al (1999) Effects of sample size on kernel home range estimates. J Wildl Manag 63:739–747. doi: 10.2307/3802664 CrossRefGoogle Scholar
  51. Sonne C (2010) Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environ Int 36:461–491. doi: 10.1016/j.envint.2010.03.002 CrossRefPubMedGoogle Scholar
  52. Stamps J (1995) Motor learning and the value of familiar space. Am Nat 146:41–58CrossRefGoogle Scholar
  53. Stirling I (2011) Polar bears: a natural history of a threatened species. Fitzhenry & Whiteside, MarkhamGoogle Scholar
  54. Stirling I, McEwan E (1975) Caloric value of whole ringed seals (Phoca hispida) in relation to polar bear (Ursus maritimus) ecology and hunting behavior. Can J Zool 53:1021–1027. doi: 10.1139/z75-117 CrossRefPubMedGoogle Scholar
  55. Stirling I, Spencer C, Andriashek D (1989) Immobilization of polar bears (Ursus maritimus) with Telazol® in the Canadian Arctic. J Wildl Dis 25:159–168. doi: 10.7589/0090-3558-25.2.159 CrossRefPubMedGoogle Scholar
  56. Stirling I, Andriashek D, Calvert W (1993) Habitat preferences of polar bears in the western Canadian Arctic in late winter and spring. Polar Rec 29:13–24. doi: 10.1017/S0032247400023172 CrossRefGoogle Scholar
  57. Thiemann GW, Derocher AE, Cherry SG et al (2013) Effects of chemical immobilization on the movement rates of free-ranging polar bears. J Mammal 94:386–397. doi: 10.1644/12-MAMM-A-230.1 CrossRefGoogle Scholar
  58. van Beest FM, Rivrud IM, Loe LE et al (2011) What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J Anim Ecol 80:771–785CrossRefPubMedGoogle Scholar
  59. Worton BJ (1987) A review of models of home range for animal movement. Ecol Model 38:277–298CrossRefGoogle Scholar
  60. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Floris M. van Beest
    • 1
  • Jon Aars
    • 3
  • Heli Routti
    • 3
  • Elisabeth Lie
    • 4
    • 5
  • Magnus Andersen
    • 3
  • Viola Pavlova
    • 1
  • Christian Sonne
    • 1
    • 2
  • Jacob Nabe-Nielsen
    • 1
    • 2
  • Rune Dietz
    • 1
    • 2
  1. 1.Department of BioscienceAarhus UniversityRoskildeDenmark
  2. 2.Arctic Research Centre (ARC)Aarhus UniversityÅrhusDenmark
  3. 3.Fram CentreNorwegian Polar InstituteTromsöNorway
  4. 4.Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and BiosciencesNorwegian University of Life Sciences (NMBU)OsloNorway
  5. 5.Norwegian Institute for Water Research (NIVA)OsloNorway

Personalised recommendations