Polar Biology

, Volume 39, Issue 5, pp 851–862 | Cite as

Sponge communities of the Antarctic Peninsula: influence of environmental variables on species composition and richness

  • Daniel KerskenEmail author
  • Barbara Feldmeyer
  • Dorte Janussen
Original Paper


Sponge communities on the Antarctic continental shelf currently represent one of the most extensive sponge grounds in the world, and all sponge classes are known to occur in the Southern Ocean. Main objectives of this study conducted at the tip of the Antarctic Peninsula were (1) to identify all sampled sponges and (2) to investigate whether the species composition and species richness of Southern Ocean sponge communities in the area of the Antarctic Peninsula are significantly influenced by environmental variables. The studied material originated from 25 AGT catches and was sampled during the expedition ANT-XXIX/3 of RV Polarstern. Samples were collected in three large-scale areas in the vicinity of the Antarctic Peninsula: Bransfield Strait, Drake Passage and Weddell Sea. The following six environmental variables were measured from bottom water samples (except for sea-ice cover): depth (m), light transmission (%), oxygen (µmol/kg), salinity, sea-ice cover (%) and temperature (°C). Two hundred and sixty-three sponge samples were analyzed, and 81 species of 33 genera from all Porifera classes (Calcarea, Demospongiae, Hexactinellida and Homoscleromorpha) were identified. Total numbers of sponge species per sample station ranged from 1 to 29. A detrended correspondence analysis and a backward-stepwise model selection were performed to check whether species composition and richness were significantly influenced by environmental variables. The analyses revealed that none of the measured environmental variables significantly influenced species composition but that species richness was significantly influenced by (1) temperature and (2) the combination of temperature and depth. Results of this study are of crucial importance for development, performance and assessment of future protection strategies in case of ongoing climatic changes at the Antarctic Peninsula.


Southern Ocean Climate change Shelf communities Antarctic sponges 



The authors want to thank the Fahrtleiter Prof. Dr. Julian Gutt and Dr. Boris Dorschel for bathymetrical data and the other colleagues on board during the expedition ANT-XXIX/3, as well as captain and crew of RV Polarstern. We further acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial support to our Antarctic Porifera project, JA-1168/17-1.

Supplementary material

300_2015_1875_MOESM1_ESM.pdf (634 kb)
Supplementary material 1 (PDF 634 kb)
300_2015_1875_MOESM2_ESM.pdf (303 kb)
Supplementary material 2 (PDF 303 kb)


  1. Arrigo KR, Worthen DL, Lizotte MP, Dixon P, Dieckmann G (1997) Primary production in Anterctic Sea ice. Science 276:394–397CrossRefPubMedGoogle Scholar
  2. Barnes DKA (1999) High diversity of tropical intertidal zone sponges in temperature, salinity and current extremes. Afr J Ecol 37:424–434CrossRefGoogle Scholar
  3. Barthel D, Gutt J (1992) Sponge associations in the eastern Weddell Sea. Antarct Sci 4:137–150CrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. R package version 0.999999-0 (
  5. Boury-Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithson Contrib Zool 596:1–55CrossRefGoogle Scholar
  6. Bracher A, Huntemann M (2015) Chlorophyll—a concentration and sea ice concentration at AGT stations during POLARSTERN cruise ANT-XXIX/3 derived from the merged daily Full Product Set (FPS) of the GlobColour Archive. doi: 10.1594/PANGEA.847994
  7. Campos M, Mothes B, Veitenheimer Mendes IL (2007a) Antarctic sponges (Porifera, Demospongiae) of the South Shetland Islands and vicinity. Part I. Spirophorida, Astrophorida, Hadromerida, Halichondrida and Haplosclerida. Rev Bras de Zool 24:687–708CrossRefGoogle Scholar
  8. Campos M, Mothes B, Veitenheimer Mendes IL (2007b) Antarctic sponges (Porifera, Demospongiae) of the South Shetland Islands and vicinity. Part II. Poecilosclerida. Rev Bras de Zool 24:742–770CrossRefGoogle Scholar
  9. Campos M, Mothes B, Lerner C, Carraro JL, Veitenheimer Mendes IL (2007c) Sponges (Porifera, Demospongiae) from Bransfield Strait, off Joinville Island, collected by Brazilian Antarctic Program—PROANTAR. In: Custódio MR, Lobo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museo Nacional, Rio de Janeiro, pp 219–232Google Scholar
  10. Cummings VJ, Thrush SF, Ciantore M, Hewitt JE, Cattaneo-Vietti R (2010) Macrobenthic communities of the north-western Ross Sea shelf: links to depth, sediment characteristics and latitude. Antarct Sci 22:793–804CrossRefGoogle Scholar
  11. Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community At McMurdo Sound, Antarctica. Ecol Monogr 44:105–128CrossRefGoogle Scholar
  12. Dayton PK, Mordida BJ, Bacon F (1994) Polar marine communities. Am Zool 34:90–99CrossRefGoogle Scholar
  13. Dinniman MS, Klinck JM, Smith WO Jr (2011) A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res II 58:1508–1523CrossRefGoogle Scholar
  14. Dorschel B, Gutt J, Piepenburg D, Schröder M, Arndt JE (2014) The influence of the geomorphological and sedimentological settings on the distribution of epibenthic assemblages on a flat topped hill on the over-deepened shelf of the western Weddell Sea (Southern Ocean). Biogeosciences 11:797–817CrossRefGoogle Scholar
  15. Dorschel B, Gutt J, Huhn O, Bracher A, Huntemann M, Huneke W, Schröder M (in review) Environmental parameters to characterise the benthic regions around the Antarctic Peninsula. Polar BiolGoogle Scholar
  16. Downey RV, Griffiths HW, Linse K, Janussen D (2012) Diversity and distribution patterns in high southern latitude sponges. PLoS One 7:1–16Google Scholar
  17. Fillinger L, Janussen D, Lundälv T, Richter C (2013) Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr Biol 23:1330–1334CrossRefPubMedGoogle Scholar
  18. Fisk MR (1990) Volcanism in the Bransfield Strait, Antarctica. J S Am Earth Sci 3:91–101CrossRefGoogle Scholar
  19. Gerrodette T, Flechsig AO (1979) Sediment-induced reduction in the pumping rate of the tropical sponge Verongia lacunose. Mar Biol 55:103–110CrossRefGoogle Scholar
  20. Göcke C, Janussen D (2011) ANT-XXIV/2 (SYSTCO) Hexactinellida (Porifera) and bathymetric traits of Antarctic glass sponges (incorporating ANDEEP-material); including an emendation of the rediscovered genus Lonchiphora. Deep Sea Res II 58:2013–2021CrossRefGoogle Scholar
  21. Göcke C, Janussen D (2013) Sponge assemblages of the deep Weddell Sea: ecological and zoogeographic results of ANDEEP I-III and SYSTCO I expeditions. Polar Biol 36:1059–1068CrossRefGoogle Scholar
  22. Gordon AL, Mensch M (2000) Deep and bottom water of the Bransfield Strait eastern and central basins. J Geophys Res 105:11337–11346CrossRefGoogle Scholar
  23. Gutt J (2013) The expedition of the research vessel “Polarstern” to the Antarctic in 2013 (ANT-XXIX/3). Rep Polar Mar Res 665:1–150Google Scholar
  24. Gutt J, Koltun VM (1995) Sponges of the Lazarev and Weddell Sea, Antarctica: explanations for their patchy occurrence. Antarct Sci 7:227–234CrossRefGoogle Scholar
  25. Gutt J, Böhmer A, Dimmler W (2013) Antarctic sponge spicule mats shape macrobenthic diversity and act as silicon trap. Mar Ecol Prog Ser 480:57–71CrossRefGoogle Scholar
  26. Helmuth B, Veit RR, Holberton R (1994) Long-distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Mar Biol 120:421–426CrossRefGoogle Scholar
  27. Hoffmann F, Røy H, Bayer K, Hentschel U, Pfannkuchen M, Brümmer F, de Beer D (2008) Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba. Mar Biol 153:1257–1264CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hogg MM, Tendal OS, Conway KW, Pomponi SA, Van Soest RWM, Gutt J, Krautter M, Roberts JM (2010) Deep-sea sponge grounds: reservoirs of biodiversity. UNEP-WCMC Biodiversity Series, CambridgeGoogle Scholar
  29. Hooper JNA, Van Soest RWM (2002) Systema porifera. A guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  30. Janussen D, Downey RV (2014) Chapter 5.5. Porifera. In: DeBroyer C, Koubbi P, Griffiths HJ, Raymond B, d’ Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettemann F, Post A, Ropert-Coudert Y (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 94–102Google Scholar
  31. Janussen D, Tendal OS (2007) Diversity and distribution in the bathyal and abyssal Weddell Sea and adjacent areas. Deep Sea Res II 54:1864–1875CrossRefGoogle Scholar
  32. Kaiser S, Brandão SN, Brix S, Barnes DKA, Bowden DA, Ingels J, Leese F, Schiaparelli S, Arango CP, Badhe R, Bax N, Blazewicz-Paszkowycz M, Brandt A, Brenke N, Catarino AI, David B, De Ridder C, Dubois P, Ellingsen KE, Glover AG, Griffiths HW, Gutt J, Halanych KM, Havermans C, Held C, Janussen D, Lörz AN, Pearce DA, Pierrat B, Riehl T, Rose A, Sands CJ, Soler-Membrives A, Schüller M, Strugnell JM, Vanreusel A, Veit-Köhler G, Wilson NG, Yasuhara M (2013) Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Mar Biol 160:2295–2317CrossRefGoogle Scholar
  33. Kersken D, Göcke C, Brandt A, Lejzerowicz F, Schwabe E, Seefeldt MA, Veit-Köhler G, Janussen D (2014) The infauna of three widely distributed sponge species (Hexactinellida and Demospongiae) from the deep Ekström Shelf in the Weddell Sea, Antarctica. Deep Sea Res II 108:101–112CrossRefGoogle Scholar
  34. Klitgaard AB, Tendal OS (2004) Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog Oceanogr 61:57–98CrossRefGoogle Scholar
  35. McClintock JB, Amsler CD, Baker BJ, Van Soest RWM (2005) Ecology of Antarctic marine sponges: an overview. Integr Comp Biol 45:359–368CrossRefPubMedGoogle Scholar
  36. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:1–5Google Scholar
  37. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  38. Sarà M, Balduzzi A, Barbieri M, Bavestrello G, Burlando B (1992) Biogeographic traits and checklist of Antarctic demosponges. Polar Biol 12:559–585CrossRefGoogle Scholar
  39. Scher HD, Martin EE (2006) Timing and climatic consequences of the opening of drake passage. Science 312:428–430CrossRefPubMedGoogle Scholar
  40. Schröder M, Wisotzki A, van Caspel M (2013) Physical oceanography measured on water bottle samples during Polarstern cruise ANT-XXIX/3. doi: 10.1594/PANGAEA.811818
  41. Teixidó N, Gili JM, Uriz MJ, Gutt J, Arntz WE (2006) Observations of asexual reproductive strategies in Antarctic hexactinellid sponges from ROV video records. Deep Sea Res II 53:972–984CrossRefGoogle Scholar
  42. Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Janussen D, Tabachnick KR, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz MC, Cárdenas P (2015) World Porifera database. Accessed 21 Jan 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daniel Kersken
    • 1
    Email author
  • Barbara Feldmeyer
    • 2
  • Dorte Janussen
    • 1
  1. 1.Senckenberg Research Institute and Nature MuseumFrankfurt am MainGermany
  2. 2.Biodiversity and Climate Research Centre by Senckenberg Naturforschende Gesellschaft and Goethe UniversityFrankfurt am MainGermany

Personalised recommendations