Advertisement

Polar Biology

, Volume 39, Issue 8, pp 1455–1465 | Cite as

Evidence of adoption, monozygotic twinning, and low inbreeding rates in a large genetic pedigree of polar bears

  • René M. Malenfant
  • David W. Coltman
  • Evan S. Richardson
  • Nicholas J. Lunn
  • Ian Stirling
  • Elizabeth Adamowicz
  • Corey S. Davis
Original Paper

Abstract

Multigenerational pedigrees have been developed for free-ranging populations of many species, are frequently used to describe mating systems, and are used in studies of quantitative genetics. Here, we document the development of a 4449-individual pedigree for the Western Hudson Bay subpopulation of polar bears (Ursus maritimus), created from relationships inferred from field and genetic data collected over six generations of bears sampled between 1966 and 2011. Microsatellite genotypes for 22–25 loci were obtained for 2945 individuals, and parentage analysis was performed using the program FRANz, including additional offspring–dam associations known only from capture data. Parentage assignments for a subset of 859 individuals were confirmed using an independent medium-density set of single nucleotide polymorphisms. To account for unsampled males in our population, we performed half-sib–full-sib analysis to reconstruct males using the program COLONY, resulting in a final pedigree containing 2957 assigned maternities and 1861 assigned paternities with only one observed case of inbreeding between close relatives. During genotyping, we identified two independently captured 2-year-old males with identical genotypes at all 25 loci, showing—for the first time—a case of monozygotic twinning among polar bears. In addition, we documented six new cases of cub adoption, which we attribute to cub misidentification or misdirected maternal care by a female bereaved of her young. Importantly, none of these adoptions could be attributed to reduced female vigilance caused by immobilization to facilitate scientific handling, as has previously been suggested.

Keywords

Ursidae Western Hudson Bay Alloparenting Relatedness Microsatellites Identical twins 

Notes

Acknowledgments

The authors would like to thank the Manitoba Department of Conservation and the Government of Nunavut for providing some of the samples, as well as Dennis Andriashek and Wendy Calvert for long-term data collection and maintenance. We would also like to acknowledge the contributions of Andrew Derocher and the late Malcolm Ramsay, who gathered some of the field data used in this study. DNA extractions for most pre-2006 tissue samples were conducted by Jennifer Bonneville Davis. Robert Cope helpfully recommended the use of the program FRANz. This project was funded by grants to CSD from Environment Canada and by a Natural Sciences and Engineering Research Council Discovery Grant to DWC (Grant ID 312207-2011). RMM is funded by scholarships from Alberta Innovates Technology Futures, the University of Alberta, and the Province of Alberta. Financial and logistical support of the long-term study of polar bears in western Hudson Bay have been provided by Care for the Wild International, the Churchill Northern Studies Centre, Environment Canada, the Isdell Family Foundation, Manitoba Conservation, Natural Sciences and Engineering Research Council, Nunavut Wildlife Research Trust Fund, Parks Canada Agency, the Strategic Technology Applications of Genomics in the Environment (STAGE) funding program, Wildlife Media Inc., World Wildlife Fund (Canada), and World Wildlife Fund Arctic Programme. Josh Miller and Jamie Gorrell provided advice and comments on an earlier version of the manuscript.

Compliance with ethical standards

Ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Environment Canada’s animal-handling procedures were approved annually by their Prairie and Northern Region Animal Care Committee, and all research was conducted under wildlife research permits issued by the Province of Manitoba and by Parks Canada Agency.

Supplementary material

300_2015_1871_MOESM1_ESM.pdf (103 kb)
Supplementary material 1 (PDF 102 kb)
300_2015_1871_MOESM2_ESM.xlsx (83 kb)
Supplementary material 2 (XLSX 83 kb)

References

  1. Amstrup SC (1993) Human disturbances of denning polar bears in Alaska. Arctic 46:246–250. doi: 10.14430/arctic1349 CrossRefGoogle Scholar
  2. Anderson AE, Wallmo OC (1984) Odocoileus hemionus. Mamm Species 219:1–9. doi: 10.2307/3504024 CrossRefGoogle Scholar
  3. Atkinson SN, Cattet MRL, Polischuk SC, Ramsay MA (1996) A case of offspring adoption in free-ranging polar bears (Ursus maritimus). Arctic 49:94–96. doi: 10.14430/arctic1187 CrossRefGoogle Scholar
  4. Belikov SE (1976) Behavioral aspects of the polar bear, Ursus maritimus. Bears Their Biol Manag 3:37–40. doi: 10.2307/3872752 CrossRefGoogle Scholar
  5. Bellemain E, Zedrosser A, Manel S, Waits LP, Taberlet P, Swenson JE (2006) The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide. Proc R Soc B 273:283–291. doi: 10.1098/Rspb.2005.3331 CrossRefPubMedGoogle Scholar
  6. Bulmer MG (1970) The biology of twinning in man. Clarendon Press, OxfordGoogle Scholar
  7. Calvert W, Ramsay MA (1998) Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10:449–453. doi: 10.2307/3873156 Google Scholar
  8. Carmichael L, Nagy JA, Strobeck C (2009) Monozygotic twin wolves with divergent life histories. Arctic 61:329–331. doi: 10.14430/arctic29 CrossRefGoogle Scholar
  9. Clutton-Brock TH, Albon SD, Guinness FE (1989) Fitness costs of gestation and lactation in wild mammals. Nature 337:260–262. doi: 10.1038/337260a0 CrossRefPubMedGoogle Scholar
  10. Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  11. Costello CM, Creel SR, Kalinowski ST, Vu NV, Quigley HB (2008) Sex-biased natal dispersal and inbreeding avoidance in American black bears as revealed by spatial genetic analyses. Mol Ecol 17:4713–4723. doi: 10.1111/j.1365-294X.2008.03930.x CrossRefPubMedGoogle Scholar
  12. Creel SR, Monfort SL, Wildt DE, Waser PM (1991) Spontaneous lactation is an adaptive result of pseudopregnancy. Nature 351:660–662. doi: 10.1038/351660a0 CrossRefPubMedGoogle Scholar
  13. Crompton AE, Obbard ME, Petersen SD, Wilson PJ (2014) Corrigendum to “Population genetic structure in polar bears (Ursus maritimus) from Hudson Bay, Canada: Implications of future climate change” [Biol. Conserv. 141(10) (2008) 2528–2539]. Biol Conserv 179:152. doi:  10.1016/j.biocon.2014.08.015
  14. Cronin MA, Shideler R, Waits L, Nelson RJ (2005) Genetic variation and relatedness on grizzly bears in the Prudhoe Bay region and adjacent areas in northern Alaska. Ursus 16:70–84. doi:10.2192/1537-6176(2005)016[0070:Gvarig]2.0.Co;2CrossRefGoogle Scholar
  15. De Barba M, Waits LP, Garton EO, Genovesi P, Randi E, Mustoni A, Groff C (2010) The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol Ecol 19:3938–3951. doi: 10.1111/J.1365-294x.2010.04791.X CrossRefPubMedGoogle Scholar
  16. Derocher AE, Stirling I (1990) Distribution of polar bears (Ursus maritimus) during the ice-free period in western Hudson Bay. Can J Zool 68:1395–1403. doi: 10.1139/z90-208 CrossRefGoogle Scholar
  17. Derocher AE, Stirling I (1996) Aspects of survival in juvenile polar bears. Can J Zool 74:1246–1252. doi: 10.1139/z96-138 CrossRefGoogle Scholar
  18. Derocher AE, Wiig Ø (1999) Observation of adoption in polar bears (Ursus maritimus). Arctic 52:413–415. doi: 10.14430/arctic946 Google Scholar
  19. Derocher AE, Stirling I, Andriashek D (1992) Pregnancy rates and serum progesterone levels of polar bears in western Hudson Bay. Can J Zool 70:561–566. doi: 10.1139/z92-084 CrossRefGoogle Scholar
  20. Derocher AE, Stirling I, Calvert W (1997) Male-biased harvesting of polar bears in western Hudson Bay. J Wildl Manag 61:1075–1082. doi: 10.2307/3802104 CrossRefGoogle Scholar
  21. Derocher AE, Andersen M, Wiig Ø, Aars J (2010) Sexual dimorphism and the mating ecology of polar bears (Ursus maritimus) at Svalbard. Behav Ecol Sociobiol 64:939–946. doi: 10.1007/s00265-010-0909-0 CrossRefGoogle Scholar
  22. Fricke PM (2001) Review: twinning in dairy cattle. Prof Anim Sci 17:61–67Google Scholar
  23. Gleeson SK, Clark AB, Dugatkin LA (1994) Monozygotic twinning: an evolutionary hypothesis. Proc Natl Acad Sci 91:11363–11367. doi: 10.1073/pnas.91.24.11363 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Glenn LP, Lentfer JW, Faro JB, Miller LH (1976) Reproductive biology of female brown bears (Ursus arctos), McNeil River, Alaska. Bears Their Biol Manag 3:381–390. doi: 10.2307/3872788 CrossRefGoogle Scholar
  25. Gorrell JC, McAdam AG, Coltman DW, Humphries MM, Boutin S (2010) Adopting kin enhances inclusive fitness in asocial red squirrels. Nat Commun 1:22. doi: 10.1038/Ncomms1022 CrossRefPubMedGoogle Scholar
  26. Grafen A (1988) On the uses of data on lifetime reproductive success. In: Clutton-Brock TH (ed) Reproductive success. Univeristy of Chicago Press, Chicago, pp 454–471Google Scholar
  27. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372. doi: 10.2307/2532296 CrossRefPubMedGoogle Scholar
  28. Hamilton WD (1964) The genetical evolution of social behaviour. I. J Theor Biol 7:1–16. doi: 10.1016/0022-5193(64)90038-4 CrossRefPubMedGoogle Scholar
  29. Hardy ICW (1995) Protagonists of polyembryony. Trends Ecol Evol 10:179–180. doi: 10.1016/S0169-5347(00)89045-X CrossRefGoogle Scholar
  30. Hoffman JI, Forcada J (2009) Genetic analysis of twinning in Antarctic fur seals (Arctocephalus gazella). J Mammal 90:621–628. doi: 10.1644/08-MAMM-A-264R1.1 CrossRefGoogle Scholar
  31. Hua P, Zhang L, Zhu G, Jones G, Zhang S, Rossiter SJ (2011) Hierarchical polygyny in multiparous lesser flat-headed bats. Mol Ecol 20:3669–3680. doi: 10.1111/j.1365-294X.2011.05192.x PubMedGoogle Scholar
  32. Itoh T, Sato Y, Kobayashi K, Mano T, Iwata R (2012) Effective dispersal of brown bears (Ursus arctos) in eastern Hokkaido, inferred from analyses of mitochondrial DNA and microsatellites. Mamm Study 37:29–41. doi: 10.3106/041.037.0104 CrossRefGoogle Scholar
  33. Jamieson A, Taylor SS (1997) Comparisons of three probability formulae for parentage exclusion. Anim Genet 28:397–400. doi: 10.1111/J.1365-2052.1997.00186.X CrossRefPubMedGoogle Scholar
  34. Johnson PCD, Haydon DT (2007) Maximum-likelihood estimation of allelic dropout and false allele error rates from microsatellite genotypes in the absence of reference data. Genetics 175:827–842. doi: 10.1534/Genetics.106.064618 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi: 10.1111/J.1755-0998.2009.02787.X CrossRefPubMedGoogle Scholar
  36. Kearney SR (1989) The polar bear alert program at Churchill, Manitoba. In: Bromley M (ed) Bear-people conflicts: proceedings of a symposium on management strategies. Northwest Territories Department of Renewable Resources, Yellowknife, pp 83–92Google Scholar
  37. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241. doi: 10.1016/S0169-5347(02)02489-8 CrossRefGoogle Scholar
  38. Kompanje EJO, Hermans JJ (2008) Cephalopagus conjoined twins in a leopard cat (Prionailurus bengalensis). J Wildl Dis 44:177–180. doi: 10.7589/0090-3558-44.1.177 CrossRefPubMedGoogle Scholar
  39. Livingston JE, Poland BJ (1980) A study of spontaneoulsy aborted twins. Teratology 21:139–148. doi: 10.1002/tera.1420210202 CrossRefPubMedGoogle Scholar
  40. Lunn NJ (1986) Observations of nonaggressive behavior between polar bear family groups. Can J Zool 64:2035–2037. doi: 10.1139/Z86-307 CrossRefGoogle Scholar
  41. Lunn NJ, Paetkau D, Calvert W, Atkinson S, Taylor M, Strobeck C (2000) Cub adoption by polar bears (Ursus maritimus): determining relatedness with microsatellite markers. J Zool 251:23–30. doi: 10.1111/j.1469-7998.2000.tb00589.x CrossRefGoogle Scholar
  42. Lunn NJ, Stirling I, Andriashek D, Richardson E (2004) Selection of maternity dens by female polar bears in western Hudson Bay, Canada and the effects of human disturbance. Polar Biol 27:350–356. doi: 10.1007/s00300-004-0604-6 CrossRefGoogle Scholar
  43. Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766PubMedPubMedCentralGoogle Scholar
  44. Malenfant RM, Coltman DW, Davis CS (2015) Design of a 9K Illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour 15:587–600. doi: 10.1111/1755-0998.12327 CrossRefPubMedGoogle Scholar
  45. Medill S, Derocher AE, Stirling I, Lunn N, Moses RA (2009) Estimating cementum annuli width in polar bears: identifying sources of variation and error. J Mammal 90:1256–1264. doi: 10.1644/08-Mamm-a-186.1 CrossRefGoogle Scholar
  46. Messier F (2000) Effects of capturing, tagging and radio-collaring polar bears for research and management purposes in Nunavut and Northwest Territories. Department of Biology, University of Saskatchewan, Saskatoon, p 64Google Scholar
  47. Moore J, Ali R (1984) Are dispersal and inbreeding avoidance related? Anim Behav 32:94–112. doi: 10.1016/S0003-3472(84)80328-0 CrossRefGoogle Scholar
  48. Moore JA, Xu R, Frank K, Draheim H, Scribner KT (2015) Social network analysis of mating patterns in American black bears (Ursus americanus). Mol Ecol 24:4010–4022. doi: 10.1111/mec.13290 CrossRefPubMedGoogle Scholar
  49. Morrissey MB, Wilson AJ (2010) PEDANTICS: an R package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing. Mol Ecol Resour 10:711–719. doi: 10.1111/J.1755-0998.2009.02817.X CrossRefPubMedGoogle Scholar
  50. Norman AJ, Spong G (2015) Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling. Ecol Evol. doi: 10.1002/ece3.1588 PubMedPubMedCentralGoogle Scholar
  51. Onorato DP, Hellgren EC, Van Den Bussche RA, Skiles JR (2004) Paternity and relatedness of American black bears recolonizing a desert montane island. Can J Zool 82:1201–1210. doi: 10.1139/Z04-097 CrossRefGoogle Scholar
  52. Paterson T, Graham M, Kennedy J, Law A (2012) VIPER: a visualisation tool for exploring inheritance inconsistencies in genotyped pedigrees. BMC Bioinform 13:16. doi: 10.1186/1471-2105-13-s8-s5 CrossRefGoogle Scholar
  53. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/J.1471-8286.2005.01155.X CrossRefGoogle Scholar
  54. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi: 10.1093/Bioinformatics/Bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pemberton JM (2008) Wild pedigrees: the way forward. Proc R Soc B 275:613–621. doi: 10.1098/rspb.2007.1531 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Poissant J, Hogg JT, Davis CS, Miller JM, Maddox JF, Coltman DW (2010) Genetic linkage map of a wild genome: genomic structure, recombination and sexual dimorphism in bighorn sheep. BMC Genom. doi: 10.1186/1471-2164-11-524 Google Scholar
  57. Pond CM, Mattacks CA, Colby RH, Ramsay MA (1992) The anatomy, chemical composition, and metabolism of adipose tissue in wild polar bears (Ursus maritimus). Can J Zool 70:326–341. doi: 10.1139/z92-049 CrossRefGoogle Scholar
  58. Proctor MF, McLellan BN, Strobeck C, Barclay RMR (2004) Gender-specific dispersal distances of grizzly bears estimated by genetic analysis. Can J Zool 82:1108–1118. doi: 10.1139/Z04-077 CrossRefGoogle Scholar
  59. Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206. doi: 10.1016/0169-5347(96)10028-8 CrossRefPubMedGoogle Scholar
  60. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275. doi: 10.2307/2409206 CrossRefGoogle Scholar
  61. Ramsay MA, Stirling I (1986) Long-term effects of drugging and handling free-ranging polar bears. J Wildl Manag 50:619–626. doi: 10.2307/3800972 CrossRefGoogle Scholar
  62. Ramsay MA, Stirling I (1988) Reproductive biology and ecology of female polar bears (Ursus maritimus). J Zool 214:601–634. doi: 10.1111/j.1469-7998.1988.tb03762.x CrossRefGoogle Scholar
  63. Ramsay MA, Mattacks CA, Pond CM (1992) Seasonal and sex differences in the structure and chemical composition of adipose tissue in wild polar bears (Ursus maritimus). J Zool 228:533–544. doi: 10.1111/j.1469-7998.1992.tb04453.x CrossRefGoogle Scholar
  64. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  65. Reid JM, Arcese P, Sardell RJ, Keller LF (2011) Additive genetic variance, heritability, and inbreeding depression in male extra-pair reproductive success. Am Nat 177:177–187. doi: 10.1086/657977 CrossRefPubMedGoogle Scholar
  66. Richardson ES (2014) The mating system and life history of the polar bear. Dissertation, University of AlbertaGoogle Scholar
  67. Richardson E, Branigan M, Calvert W, Cattet M, Derocher AE, Doidge W, Hedman D, Lunn NJ, McLoughlin P, Obbard ME, Stirling I, Taylor M (2006) Research on polar bears in Canada 2001–2004. In: Aars J, Lunn NJ, Derocher AE (eds) Polar bears: proceedings of the 14th working meeting of the IUCN/SSC polar bear specialist group, 20–24 June 2005, Seattle, Washington, USA. IUCN, Gland, pp 117–132Google Scholar
  68. Riedman ML (1982) The evolution of alloparental care and adoption in mammals and birds. Q Rev Biol 57:405–435. doi: 10.1086/412936 CrossRefGoogle Scholar
  69. Riedman ML, Boeuf BJ (1982) Mother-pup separation and adoption in northern elephant seals. Behav Ecol Sociobiol 11:203–215. doi: 10.1007/BF00300063 CrossRefGoogle Scholar
  70. Riester M, Stadler PF, Klemm K (2009) FRANz: reconstruction of wild multi-generation pedigrees. Bioinformatics 25:2134–2139. doi: 10.1093/Bioinformatics/Btp064 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Riester M, Stadler PF, Klemm K (2010) Reconstruction of pedigrees in clonal plant populations. Theor Popul Biol 78:109–117. doi: 10.1016/J.Tpb.05.002 CrossRefPubMedGoogle Scholar
  72. Rode KD, Pagano AM, Bromaghin JF, Atwood TC, Durner GM, Simac KS, Amstrup SC (2014) Effects of capturing and collaring on polar bears: findings from long-term research on the southern Beaufort Sea population. Wildl Res 41:311–322. doi: 10.1071/WR13225 CrossRefGoogle Scholar
  73. Rosing-Asvid A, Born E, Kingsley M (2002) Age at sexual maturity of males and timing of the mating season of polar bears (Ursus maritimus) in Greenland. Polar Biol 25:878–883. doi: 10.1007/s00300-002-0430-7 Google Scholar
  74. Roulin A (2002) Why do lactating females nurse alien offspring? A review of hypotheses and empirical evidence. Anim Behav 63:201–208. doi: 10.1006/anbe.2001.1895 CrossRefGoogle Scholar
  75. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/J.1471-8286.2007.01931.X CrossRefPubMedGoogle Scholar
  76. Saunders BL (2005) The mating system of polar bears in the Central Canadian Arctic. M.Sc. thesis, Queen’s UniversityGoogle Scholar
  77. Silva del Río N, Kirkpatrick BW, Fricke PM (2006) Observed frequency of monozygotic twinning in Holstein dairy cattle. Theriogenology 66:1292–1299. doi: 10.1016/j.theriogenology.2006.04.013 CrossRefPubMedGoogle Scholar
  78. Slate J, Visscher PM, MacGregor S, Stevens D, Tate ML, Pemberton JM (2002) A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics 162:1863–1873PubMedPubMedCentralGoogle Scholar
  79. Spotte S (1982) The incidence of twins in pinnipeds. Can J Zool 60:2226–2233. doi: 10.1139/z82-285 CrossRefGoogle Scholar
  80. Stirling I, Derocher AE (2012) Effects of climate warming on polar bears: a review of the evidence. Global Change Biol 18:2694–2706. doi: 10.1111/j.1365-2486.2012.02753.x CrossRefGoogle Scholar
  81. Stirling I, Lunn NJ, Iacozza J (1999) Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Arctic 52:294–306. doi: 10.14430/arctic935 CrossRefGoogle Scholar
  82. Szulkin M, Stopher KV, Pemberton JM, Reid JM (2013) Inbreeding avoidance, tolerance, or preference in animals? Trends Ecol Evol 28:205–211. doi: 10.1016/j.tree.2012.10.016 CrossRefPubMedGoogle Scholar
  83. Taylor M, Larsen T, Schweinsburg RE (1985) Observations of intraspecific aggression and cannibalism in polar bears (Ursus maritimus). Arctic 38:303–309. doi: 10.14430/arctic2149 CrossRefGoogle Scholar
  84. Taylor MK, McLoughlin PD, Messier F (2008) Sex-selective harvesting of polar bears Ursus maritimus. Wildl Biol 14:52–60. doi:10.2981/0909-6396(2008)14[52:SHOPBU]2.0.CO;2CrossRefGoogle Scholar
  85. Taylor RW, Boon AK, Dantzer B, Réale D, Humphries MM, Boutin S, Gorrell JC, Coltman DW, McAdam AG (2012) Low heritabilities, but genetic and maternal correlations between red squirrel behaviours. J Evol Biol 25:614–624. doi: 10.1111/j.1420-9101.2012.02456.x CrossRefPubMedGoogle Scholar
  86. Thiemann GW, Iverson SJ, Stirling I (2008) Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecol Monogr 78:591–613. doi: 10.1890/07-1050.1 CrossRefGoogle Scholar
  87. Vibe C (1976) Preliminary report on the second danish polar bear expedition to North East Greenland, 1974. In: Proceedings of the fifth working meeting of the polar bear specialist group. IUCN, Morges, Switzerland, pp 91–97Google Scholar
  88. Viengkone M (2015) Population structure and space-use of Polar bears (Ursus maritimus) in Hudson Bay. Thesis, University of Alberta, M.ScGoogle Scholar
  89. Villinger J, Waldman B (2012) Social discrimination by quantitative assessment of immunogenetic similarity. Proc R Soc B 279:4368–4374. doi: 10.1098/rspb.2012.1279 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wang JL (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215PubMedPubMedCentralGoogle Scholar
  91. Wang JL (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145. doi: 10.1111/J.1755-0998.2010.02885.X CrossRefPubMedGoogle Scholar
  92. Weber DS, Van Coeverden De Groot PJ, Peacock E, Schrenzel MD, Perez DA, Thomas S, Shelton JM, Else CK, Darby LL, Acosta L, Harris C, Youngblood J, Boag P, Desalle R (2013) Low MHC variation in the polar bear: implications in the face of Arctic warming? Anim Conserv 16:671–683. doi: 10.1111/acv.12045 CrossRefGoogle Scholar
  93. Wilkinson GS (1992) Communal nursing in the evening bat, Nycticeius humeralis. Behav Ecol Sociobiol 31:225–235. doi: 10.1007/BF00171677 CrossRefGoogle Scholar
  94. Williams GC (1975) Sex and evolution. Princeton University Press, PrincetonGoogle Scholar
  95. Zedrosser A, Støen O-G, Sæbø S, Swenson JE (2007) Should I stay or should I go? Natal dispersal in the brown bear. Anim Behav 74:369–376. doi: 10.1016/j.anbehav.2006.09.015 CrossRefGoogle Scholar
  96. Zeyl E, Aars J, Ehrich D, Bachmann L, Wiig Ø (2009a) The mating system of polar bears: a genetic approach. Can J Zool 87:1195–1209. doi: 10.1139/Z09-107 CrossRefGoogle Scholar
  97. Zeyl E, Aars J, Ehrich D, Wiig Ø (2009b) Families in space: relatedness in the Barents Sea population of polar bears (Ursus maritimus). Mol Ecol 18:735–749. doi: 10.1111/J.1365-294x.2008.04049.X CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • René M. Malenfant
    • 1
  • David W. Coltman
    • 1
  • Evan S. Richardson
    • 2
  • Nicholas J. Lunn
    • 2
  • Ian Stirling
    • 1
    • 2
  • Elizabeth Adamowicz
    • 1
  • Corey S. Davis
    • 1
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, CW405 Biological Sciences CentreUniversity of AlbertaEdmontonCanada

Personalised recommendations