Polar Biology

, Volume 39, Issue 8, pp 1425–1437 | Cite as

Birds, nutrients, and climate change: mtDNA haplotype diversity of Arctic Daphnia on Svalbard revisited

  • Kristian AlfsnesEmail author
  • Anders Hobæk
  • Lawrence J. Weider
  • Dag O. Hessen
Original Paper


Ecosystems in the high Arctic are in transition due to climate change and species shifts. On the Svalbard archipelago, the average annual temperature has increased by more than 2 °C over the past 30 years, and there has been a striking increase in breeding populations of geese. Birds serve as a dominant source of nutrients (via faeces) and may also serve as vectors of dispersal of many small aquatic organisms. We compared samples of species and haplotype composition of the dominant freshwater crustacean Daphnia spp., from 1992, and those resampled in 2014 to see if these major impacts on Arctic freshwater ecosystems may also have affected this key grazer over the past three decades. The study covers tundra ponds that vary in levels of nutrients, abundance, and diversity of birds. Comparison of genetic mitochondrial DNA sequences revealed little change in haplotype and nucleotide diversity between 1992 and 2014, but higher species and haplotype diversity were found in nutrient-rich ponds that hosted large migratory bird populations. This could either reflect that high nutrient levels allow for the maintenance of higher levels of genetic diversity (i.e. haplotypes, lineages), that birds serve as vectors for the dispersal of clones, or likely a combination of both mechanisms.


Arctic Svalbard Climate change Bird influence Daphnia Genetic diversity 



The collection of samples on Svalbard in 2014 was done during an expedition funded by the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract No. Pol-Nor/201992/93/2014. The authors also acknowledge the funding sources (see Weider and Hobæk 1994) that allowed for the 1992 sample collection expedition. We thank three anonymous reviewers for their constructive comments on earlier versions of the manuscript.

Supplementary material

300_2015_1868_MOESM1_ESM.docx (16 kb)
Online Resource 1 List of primers and PCR cycling conditions (DOCX 15 kb)
300_2015_1868_MOESM2_ESM.docx (18 kb)
Online Resource 2 List of previously published Daphnia pulex species complex sequences included in the phylogeny (DOCX 17 kb)
300_2015_1868_MOESM3_ESM.pdf (116 kb)
Online Resource 3 Bayesian phylogeny as shown in Fig. 2 showing all (uncollapsed) clades and every pond. Taxa indicated with Regions, followed by ponds (# - see Table 3), number of sequences (italics) and sample year (PDF 115 kb)
300_2015_1868_MOESM4_ESM.docx (18 kb)
Online Resource 4 Lineages by regions and the respective population genetic parameters (DOCX 17 kb)
300_2015_1868_MOESM5_ESM.docx (18 kb)
Online Resource 5 Distribution of haplotypes (DOCX 17 kb)
300_2015_1868_MOESM6_ESM.docx (17 kb)
Online Resource 6 Haplotype and lineage comparison of individual ponds sampled in 1992 and 2014 (DOCX 17 kb)
300_2015_1868_MOESM7_ESM.pdf (106 kb)
Online Resource 7 Linear correlation between nutrient content (μg P/L) and; haplotype (Hd) and nucleotide (π) diversity for the 2014 dataset. (PDF 106 kb)
300_2015_1868_MOESM8_ESM.pdf (106 kb)
Online Resource 8 Rarefaction curves (using R and specaccum{vegan}, 100 permutations, first order jack-knife) showing the expected discovery of haplotypes for ponds at Måkeøyane and Reinsdyrflya from 1992 and 2014. Bars are 95 % confidence intervals (PDF 105 kb)
300_2015_1868_MOESM9_ESM.docx (14 kb)
Online Resource 9 AMOVA for the 1992 and 2014 datasets (DOCX 14 kb)


  1. Adamowicz SJ, Petrusek A, Colbourne JK, Hebert PDN, Witt JDS (2009) The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Mol Phylogenet Evol 50:423–436CrossRefPubMedGoogle Scholar
  2. Alerstam T, Gudmundsson GA (1999) Migration patterns of tundra birds: tracking radar observations along the Northeast Passage. Arctic 52:346–371CrossRefGoogle Scholar
  3. Allen MR, Thum RA, Cáceres CE (2010) Does local adaptation to resources explain genetic differentiation among Daphnia populations? Mol Ecol 19:3076–3087CrossRefPubMedGoogle Scholar
  4. Altermatt F, Pajunen VI, Ebert D (2008) Climate change affects colonization dynamics in a metacommunity of three Daphnia species. Glob Change Biol 14:1209–1220CrossRefGoogle Scholar
  5. Boavida MJ, Heath RT (1984) Are the phosphatases released by Daphnia magna components of its food? Limnol Oceanogr 29:641–645CrossRefGoogle Scholar
  6. Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society, MadisonGoogle Scholar
  7. Colbourne JK, Hebert PD (1996) The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Philos Trans R Soc Lond B Biol Sci 351:349–360CrossRefPubMedGoogle Scholar
  8. Colbourne JK, Crease TJ, Weider LJ, Hebert PD, Duferesne F, Hobaek A (1998) Phylogenetics and evolution of a circumarctic species complex (Cladocera: Daphnia pulex). Biol J Linn Soc 65:347–365Google Scholar
  9. Crease TJ, Omilian AR, Costanzo KS, Taylor DJ (2012) Transcontinental phylogeography of the Daphnia pulex species complex. PLoS ONE 7:e46620CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dufresne F, Hebert PDN (1997) Pleistocene glaciations and polyphyletic origins of polyploidy in an arctic cladoceran. Proc R Soc Lond B Biol Sci 264:201–206CrossRefGoogle Scholar
  11. Dufresne F, Marková S, Vergilino R, Ventura M, Kotlík P (2011) Diversity in the reproductive modes of European Daphnia pulicaria deviates from the geographical parthenogenesis. PLoS ONE 6:e20049CrossRefPubMedPubMedCentralGoogle Scholar
  12. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  13. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  14. Figuerola J, Green AJ, Michot TC (2005) Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates. Am Nat 165:274–280CrossRefPubMedGoogle Scholar
  15. Fox AD, Ebbinge BS, Mitchell C, Heinicke T, Aarvak T, Colhoun K, Clausen P, Dereliev S, Faragó S, Koffijberg K, Kruckenberg H (2010) Current estimates of goose population sizes in western Europe, a gap analysis and an assessment of trends. Ornis Svecica 20:115–127Google Scholar
  16. Frisch D, Green AJ, Figuerola J (2007) High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquat Sci 69:568–574CrossRefGoogle Scholar
  17. Hebert P (1978) The population biology of Daphnia (Crustacea, Daphnidae). Biol Rev 53:387–426CrossRefGoogle Scholar
  18. Hebert P, Emery C (1990) The adaptive significance of cuticular pigmentation in Daphnia. Funct Ecol 4:703–710CrossRefGoogle Scholar
  19. Hebert PDN, Hann BJ (1986) Patterns in the composition of arctic tundra pond microcrustacean communities. Can J Fish Aquat Sci 43:1416–1425CrossRefGoogle Scholar
  20. Hessen DO, Faafeng BA, Smith VH, Bakkestuen V, Walseng B (2006) Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology 87:433–443CrossRefPubMedGoogle Scholar
  21. Hessen DO, Bakkestuen V, Walseng B (2007) Energy input and zooplankton species richness. Ecography 30:749–758CrossRefGoogle Scholar
  22. Holm TM, Koinig KA, Andersen T, Donali E, Hormes A, Klaveness D, Psenner R (2012) Rapid physicochemical changes in the high Arctic Lake Kongressvatn caused by recent climate change. Aquat Sci 74:385–395CrossRefGoogle Scholar
  23. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17:754–755CrossRefGoogle Scholar
  24. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: The physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY Google Scholar
  25. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  26. Latta LC, Bakelar JW, Knapp RA, Pfrender ME (2007) Rapid evolution in response to introduced predators II: the contribution of adaptive plasticity. BMC Evol Biol 7:21CrossRefPubMedPubMedCentralGoogle Scholar
  27. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  28. Madsen J, Cracknell G, Fox AD (1999) Goose populations of the Western Palearctic. A review of status and distribution. Wetlands International Publication No. 48. Wetlands International, Wageningen, The Netherlands. National Environmental Research Institute, Rønde, DenmarkGoogle Scholar
  29. Marková S, Dufresne F, Rees DJ, Cerný M, Kotlík P (2007) Cryptic intercontinental colonization in water fleas Daphnia pulicaria inferred from phylogenetic analysis of mitochondrial DNA variation. Mol Phylogenet Evol 44:42–52CrossRefPubMedGoogle Scholar
  30. Marková S, Dufresne F, Manca M, Kotlík P (2013) Mitochondrial capture misleads about ecological speciation in the Daphnia pulex complex. PLoS ONE 8:e69497CrossRefPubMedPubMedCentralGoogle Scholar
  31. McCarthy SDS, Rafferty SP, Frost PC (2010) Responses of alkaline phosphatase activity to phosphorus stress in Daphnia magna. J Exp Biol 213:256–261CrossRefPubMedGoogle Scholar
  32. Mergeay J, Aguilera X, Declerck S, Petrusek A, Huyse T, De Meester L (2008) The genetic legacy of polyploid Bolivian Daphnia: the tropical Andes as a source for the North and South American D. pulicaria complex. Mol Ecol 17:1789–1800CrossRefPubMedGoogle Scholar
  33. Miner BE, Kerr B (2011) Adaptation to local ultraviolet radiation conditions among neighbouring Daphnia populations. Proc Biol Sci/R Soc 278:1306–1313CrossRefGoogle Scholar
  34. Miner BE, Knapp RA, Colbourne JK, Pfrender ME (2013) Evolutionary history of alpine and subalpine Daphnia in western North America. Freshw Biol 58:1512–1522CrossRefGoogle Scholar
  35. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  36. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, 2Google Scholar
  38. Olson MH, Hage MM, Binkley MD, Binder JR (2005) Impact of migratory snow geese on nitrogen and phosphorus dynamics in a freshwater reservoir. Freshw Biol 50:882–890CrossRefGoogle Scholar
  39. Pedersen A, Speed JDM, Tombre IM (2013) Prevalence of pink-footed goose grubbing in the arctic tundra increases with population expansion. Polar Biol 36:1569–1575CrossRefGoogle Scholar
  40. Prop J, Black JM, Shimmings P, Owen M (1998) The spring range of barnacle geese Branta leucopsis in relation to changes in land management and climate. Biol Conserv 86:339–346CrossRefGoogle Scholar
  41. Prop J, Aars J, Bårdsen BJ, Hanssen SA, Bech C, Bourgeon S, de Fouw J, Gabrielsen GW, Lang J, Noreen E, Oudman T (2015) Climate change and the increasing impact of polar bears on bird populations. Front Ecol Evol 3:1–12CrossRefGoogle Scholar
  42. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  43. Sarnelle O, Wilson AE (2005) Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol Oceanogr 50:1565–1570CrossRefGoogle Scholar
  44. Scoville AG, Pfrender ME (2010) Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc Natl Acad Sci USA 107:4260–4263CrossRefPubMedPubMedCentralGoogle Scholar
  45. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  46. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tollrian R, Heibl C (2004) Phenotypic plasticity in pigmentation in Daphnia induced by UV radiation and fish kairomones. Funct Ecol 18:497–502CrossRefGoogle Scholar
  48. Van Eerden MR, Drent RH, Stahl J, Bakker JP (2005) Connecting seas: Western Palaearctic continental flyway for water birds in the perspective of changing land use and climate. Glob Change Biol 11:894–908CrossRefGoogle Scholar
  49. Van Geest GJ, Hessen DO, Spierenburg P, Dahl-Hansen GA, Christensen G, Faerovig PJ, Brehm M, Loonen MJ, Van Donk E (2007) Goose-mediated nutrient enrichment and planktonic grazer control in arctic freshwater ponds. Oecologia 153:653–662CrossRefPubMedGoogle Scholar
  50. Vergilino R, Belzile C, Dufresne F (2009) Genome size evolution and polyploidy in the Daphnia pulex complex (Cladocera: Daphniidae). Biol J Linn Soc 97:68–79CrossRefGoogle Scholar
  51. Vergilino R, Markova S, Ventura M, Manca M, Dufresne F (2011) Reticulate evolution of the Daphnia pulex complex as revealed by nuclear markers. Mol Ecol 20:1191–1207CrossRefPubMedGoogle Scholar
  52. Ward RD, Bickerton MA, Finston T, Hebert PDN (1994) Geographical cline in breeding systems and ploidy levels in European populations of Daphnia pulex. Heredity 73:532–543CrossRefGoogle Scholar
  53. Weider L, Hobaek A (1994) Molecular biogeography of clonal lineages in a high-Arctic apomictic Daphnia complex. Mol Ecol 3:497–506CrossRefPubMedGoogle Scholar
  54. Weider LJ, Beaton MJ, Hebert PDN (1987) Clonal diversity in High-Arctic populations of Daphnia pulex, a polyploid apomictic complex. Evolution 41:1335–1346CrossRefGoogle Scholar
  55. Weider LJ, Hobaek A, Colbourne JK, Crease TJ, Dufresne F, Hebert PD (1999a) Holarctic phylogeography of an asexual species complex I. Mitochondrial DNA variation in Arctic Daphnia. Evolution 53:777–792CrossRefGoogle Scholar
  56. Weider LLJ, Hobæk A, Hebert PDN, Crease TJ, Hobaek A (1999b) Holarctic phylogeography of an asexual species complex—II. Allozymic variation and clonal structure in Arctic Daphnia. Mol Ecol 8:1–13CrossRefGoogle Scholar
  57. Weider LJ, Jeyasingh PD, Looper KG (2008) Stoichiometric differences in food quality: impacts on genetic diversity and the coexistence of aquatic herbivores in a Daphnia hybrid complex. Oecologia 158:47–55CrossRefPubMedGoogle Scholar
  58. Weider LJ, Frisch D, Hebert PDN (2010) Long-term changes in metapopulation genetic structure: a quarter-century retrospective study on low-Arctic rock pool Daphnia. Proc Biol Sci/R Soc 277:139–146CrossRefGoogle Scholar
  59. Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Inc., SunderlandGoogle Scholar
  60. Weir B, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  61. Wilson CC, Hebert PDN (1992) The maintenance of taxon diversity in an asexual assemblage: an experimental analysis. Ecology 73:1462–1472CrossRefGoogle Scholar
  62. Xu L, Myneni RB, Chapin FS III, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Bi J, Ciais P, Tømmervik H, Euskirchen ES (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Change 3:581–586Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kristian Alfsnes
    • 1
    Email author
  • Anders Hobæk
    • 2
    • 3
  • Lawrence J. Weider
    • 4
  • Dag O. Hessen
    • 1
  1. 1.Department of Biology, AKVAUniversity of OsloOsloNorway
  2. 2.Norwegian Institute for Water ResearchBergenNorway
  3. 3.Department of BiologyUniversity of BergenBergenNorway
  4. 4.Program in Ecology and Evolutionary Biology, Department of BiologyUniversity of OklahomaNormanUSA

Personalised recommendations