Polar Biology

, Volume 39, Issue 5, pp 765–787 | Cite as

Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern expedition PS81, ANT-XXIX/3)

  • B. DorschelEmail author
  • J. Gutt
  • O. Huhn
  • A. Bracher
  • M. Huntemann
  • W. Huneke
  • C. Gebhardt
  • M. Schröder
  • H. Herr
Original Paper


During the austral summer expedition PS81, ANT-XXIX/3 with the German research ice breaker Polarstern in 2013, research was carried out to investigate the role of environmental factors on the distribution of benthic communities and marine mammal and krill densities around the northern tip of the Antarctic Peninsula. For these studies collated in this special issue and studies in this area, we present a collection of environmental parameters with probable influence on the marine ecosystems around the Antarctic Peninsula.


Environmental setting Bathymetry Sea ice Chlorophyll Oceanography 



We would like to thank the Captain and the crew of the RV Polarstern PS81, ANT-XXIX/3, for their excellent help and support. D. Damaske and J. Bedmar are thanked for their help in collecting hydroacoustic data, M. Vogt and T. Hannemann are thanked for helping to collect CFC and noble gas samples, and the oceanography group is thanked for collecting hydrographic data during PS81, ANT-XXIX/3. K. Bulsiewicz and J. Sültenfuß are thanked for their analysis in the IUP Bremen Tracer Lab. We are also grateful for the helpful comments of K. Linse and P.E. O’Brian who have reviewed the manuscript. Satellite data were provided by NASA (SeaWiFS, MODIS), ESA (MERIS, GlobColour) and PHAROS Group of University of Bremen. The published research is part of the AWI research programme PACES II. Part of the tracer analysis was funded by the Deutsche Forschungsgemeinschaft within the Schwerpunktprogramm Antarktisforschung (SPP 1158, Grant Number HU 1544/4).

Supplementary material

300_2015_1861_MOESM1_ESM.docx (122 kb)
Supplementary material 1 (DOCX 122 kb)


  1. ACRI-ST LOV, UoP, NIVA, BC, DLR, ICESS Consortium ESA DUE (2007) GlobCOLOUR: an EO based service supporting global ocean carbon cycle research. Full validation report.
  2. Aquilina A et al (2013) Geochemical and visual indicators of hydrothermal fluid flow through a sediment-hosted volcanic ridge in the Central Bransfield Basin (Antarctica). PLoS ONE 8:54686. doi: 10.1371/journal.pone.0054686 CrossRefGoogle Scholar
  3. Arndt JE et al (2013) The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—a new bathymetric compilation covering circum-Antarctic waters. Geophys Res Lett 40:1–7. doi: 10.1002/grl.50413 CrossRefGoogle Scholar
  4. Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res. doi: 10.1029/2007JC004551 Google Scholar
  5. Beaman RJ, Harris PT (2005) Bioregionalization of the George V Shelf. East Antarct Cont Shelf Res 25:1657–1691. doi: 10.1016/j.csr.2005.04.013 CrossRefGoogle Scholar
  6. Beaman RJ, O’Brian PE, Post AL, De Santis L (2011) A new high-resolution bathymetry model for the Terre Adélie and George V continental margin. East Antarct Antarct Sci 23:95–103. doi: 10.1017/S095410201000074X CrossRefGoogle Scholar
  7. Bowden DA, Schiaparelli S, Clark MR, Rickard GJ (2011) A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep Sea Res Part II Top Stud Oceanogr 58:119–127. doi: 10.1016/j.dsr2.2010.09.006 CrossRefGoogle Scholar
  8. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, OxfordGoogle Scholar
  9. Bulsiewicz K, Rose H, Klatt O, Putzka A, Roether W (1998) A capillary-column chromatographic system for efficient chlorofluorocarbon measurement in ocean waters. J Geophys Res 103:15959–15970. doi: 10.1029/98JC00140 CrossRefGoogle Scholar
  10. Burrough PA, McDonell RA (1998) Principles of geographical information systems. Oxford University Press, New YorkGoogle Scholar
  11. Camerlenghi A et al (2001) Glacial morphology and post-glacial contourites in northern Prince Gustav Channel (NW Weddell Sea, Antarctica). Mar Geophys Res 22:417–443. doi: 10.1023/A:1016399616365 CrossRefGoogle Scholar
  12. Cape MR, Vernet M, Kahru M, Spreen G (2014) Polynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapse. J Geophys Res 119:572–594. doi: 10.1002/2013JC009441 CrossRefGoogle Scholar
  13. Cavalieri DJ, Parkinson CL (2008) Antarctic sea ice variability and trends, 1979–2006. J Geophys Res 113:C07004. doi: 10.1029/2007JC004564 Google Scholar
  14. Cavalieri DJ, Parkinson CL (2012) Arctic sea ice variability and trends, 1979–2010. Cryosphere 6:881–889. doi: 10.5194/tc-6-881-2012 CrossRefGoogle Scholar
  15. Chen C-T, Millero FJ (1977) Speed of sound in seawater at high pressures. J Acoust Soc Am 62:1129–1135. doi: 10.1121/1.381646 CrossRefGoogle Scholar
  16. Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans R Soc B 362:149–166. doi: 10.1098/rstb.2006.1958 CrossRefGoogle Scholar
  17. Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544. doi: 10.1126/science.1104235 CrossRefPubMedGoogle Scholar
  18. Davies BJ, Hambrey MJ, Smellie JL, Carrivick JL, Glasser NF (2012) Antarctic Peninsula Ice Sheet evolution during the Cenozoic Era. Quat Sci Rev 31:30–66. doi: 10.1016/j.quascirev.2011.10.012 CrossRefGoogle Scholar
  19. Dorschel B, Gutt J, Piepenburg D, Schröder M, Arndt JE (2014) The influence of the geomorphological and sedimentological settings on the distribution of epibenthic assemblages on a flat topped hill on the over-deepened shelf of the western Weddell Sea (Southern Ocean). Biogeosciences 11:3797–3817. doi: 10.5194/bg-11-3797-2014 CrossRefGoogle Scholar
  20. Ducklow HW et al (2006) Water-column processes in the West Antarctic Peninsula and the Ross Sea: interannual variations and foodweb structure. Deep Sea Res Part II 53:834–852. doi: 10.1016/j.dsr2.2006.02.009 CrossRefGoogle Scholar
  21. Gordon AL, Mensch M, Zhaoqian D, Smethie WM Jr, de Bettencourt J (2000) Deep and bottom water of the Bransfield Strait eastern and central basins. J Geophys Res 105:11337–11346. doi: 10.1029/2000JC900030 CrossRefGoogle Scholar
  22. Greenwood SL, Gyllencreutz R, Jakobsson M, Anderson JB (2012) Ice-flow switching and East/West Antarctic Ice Sheet roles in glaciation of the western Ross Sea. Geol Soc Am Bull. doi: 10.1130/B30643.1 Google Scholar
  23. Gutt J (2013) The expedition of the research vessel “Polarstern” to the Antarctic in 2013 (ANT-XXIX/3), vol 665. Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung Bremerhaven, BremerhavenGoogle Scholar
  24. Hall TM, Haine TWN, Waugh DW, Holzer M, Terenzi F, LeBel DA (2007) Ventilation rates estimated from tracers in the presence of mixing. J Phys Oceanogr 37:2599–2611. doi: 10.1175/2006JPO3471.1 CrossRefGoogle Scholar
  25. Hellmer HH, Huhn O, Gomis D, Timmermann R (2011) On the freshening of the northwestern Weddell Sea continental shelf. Ocean Sci 7:305–316. doi: 10.5194/os-7-305-2011 CrossRefGoogle Scholar
  26. Hinrichsen H-H, Tomczak M Jr (1993) Optimum multiparameter analysis of the water mass structure in the western North Atlantic Ocean. J Geophys Res 98:10155–10169. doi: 10.1029/93JC00180 CrossRefGoogle Scholar
  27. Huhn O, Hellmer HH, Rhein M, Rodehacke C, Roether W, Schodlok MP, Schröder M (2008a) Evidence of deep- and bottom-water formation in the western Weddell Sea. Deep Sea Res Part II 55:1098–1116. doi: 10.1016/j.dsr2.2007.12.015 CrossRefGoogle Scholar
  28. Huhn O, Roether W, Steinfeldt R (2008b) Age spectra in North Atlantic Deep Water along the South American continental slope, 10°N–30°S, based on tracer observations. Deep Sea Res Part I 55:1252–1276. doi: 10.1016/j.dsr.2008.05.016 CrossRefGoogle Scholar
  29. Huhn O, Rhein M, Hoppema M, van Heuven S (2013) Decline of deep and bottom water ventilation and slowing down of anthropogenic carbon storage in the Weddell Sea, 1984–2011. Deep Sea Res Part I 76:66–84. doi: 10.1016/j.dsr.2013.01.005 CrossRefGoogle Scholar
  30. Jakobsson M et al (2012) Ice sheet retreat dynamics inferred from glacial morphology of the central Pine Island Bay Trough. West Antarct Quat Sci Rev 38:1–10. doi: 10.1016/j.quascirev.2011.12.017 CrossRefGoogle Scholar
  31. Jerosch K, Kuhn G, Krajnik I, Scharf FK, Dorschel B (2015) A geomorphological seabed classification for the Weddell Sea. Antarct Mar Geophys Res. doi: 10.1007/s11001-015-9256-x Google Scholar
  32. King JC (1994) Recent climate variability in the vicinity of the antarctic peninsula. Int J Climatol 14:357–369. doi: 10.1002/joc.3370140402 CrossRefGoogle Scholar
  33. Klages JP et al (2014) Retreat of the West Antarctic Ice Sheet from the western Amundsen Sea shelf at a pre- or early LGM stage. Quat Sci Rev 91:1–15. doi: 10.1016/j.quascirev.2014.02.017 CrossRefGoogle Scholar
  34. Klinkhammer GP, Chin CS, Wilson C, Lawver LA (1996) Hydrothermal and hydrographic surveys of the Bransfield Strait: results from cruise NBP95-07. Antarct J US 31:92–94Google Scholar
  35. Klinkhammer GP et al (2001) Discovery of new hydrothermal vent sites in Bransfield Strait. Antarctica EPSL 193:395–407. doi: 10.1016/S0012-821X(01)00536-2 CrossRefGoogle Scholar
  36. Loose B, Jenkins WJ (2014) The five stable noble gases are sensitive unambiguous tracers of glacial meltwater. Geophys Res Lett 41:2835–2841. doi: 10.1002/2013GL058804 CrossRefGoogle Scholar
  37. Maritorena S, Siegel DA (2005) Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sens Environ 94:429–440. doi: 10.1016/j.rse.2004.08.014 CrossRefGoogle Scholar
  38. Maritorena S, Siegel DA, Peterson AR (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Opt 41:2705–2714. doi: 10.1364/AO.41.002705 CrossRefPubMedGoogle Scholar
  39. Maritorena S, Fanton d’Andon OH, Mangin A, Siegel DA (2010) Merged satellite ocean color data products using a bio-optical model: characteristics, benefits and issues. Remote Sens Environ 114:1791–1804. doi: 10.1016/j.rse.2010.04.002 CrossRefGoogle Scholar
  40. Montes-Hugo M, Doney SC, Ducklow HW, Fraser WR, Martinson DG, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–1473. doi: 10.1126/science.1164533 CrossRefPubMedGoogle Scholar
  41. Ó Cofaigh C, Dowdeswell JA, Evans J, Larter RD (2008) Geological constraints on Antarctic palaeo-ice-stream retreat. Earth Surf Processes Landf 33:513–525. doi: 10.1002/esp.1669 CrossRefGoogle Scholar
  42. Orsi AH, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I 42:641–673. doi: 10.1016/0967-0637(95)00021-W CrossRefGoogle Scholar
  43. Parkinson CL, Cavalieri DJ (2012) Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6:871–880. doi: 10.5194/tc-6-871-2012 CrossRefGoogle Scholar
  44. Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104:20837–20856. doi: 10.1029/1999jc900082 CrossRefGoogle Scholar
  45. Petersen S, Herzig PM, Schwarz-Schampera U, Hannington MD, Jonasson IR (2004) Hydrothermal precipitates associated with bimodal volcanism in the Central Bransfield Strait. Antarct Miner Depos 39:358–379. doi: 10.1007/s00126-004-0414-3 CrossRefGoogle Scholar
  46. Pitcher TJ, Morato T, Hart PJB, Clark MR, Haggan N, Santos RS (2007) Seamounts: ecology, fisheries & conservation. Blackwell Pub Professional, OxfordCrossRefGoogle Scholar
  47. Provost C (2010) The expedition of the research vessel “Polarstern” to the Antarctic in 2009 (ANT-XXV/4), vol 616. Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, BremerhavenGoogle Scholar
  48. Rebesco M et al (2014) Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf. Antarct Sci 345:1354–1358. doi: 10.1126/science.1256697 Google Scholar
  49. Rogers AD (1994) The biology of seamounts. Adv Mar Biol 30:305–350. doi: 10.1016/S0065-2881(08)60065-6 CrossRefGoogle Scholar
  50. Schloss IR, Abele D, Moreau S, Demers S, Bers AV, González O, Ferreyra GA (2012) Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). J Mar Syst 92:53–66. doi: 10.1016/j.jmarsys.2011.10.006 CrossRefGoogle Scholar
  51. Schlosser P (1986) Helium: a new tracer in Antarctic oceanography. Nature 321:233–235. doi: 10.1038/321233a0 CrossRefGoogle Scholar
  52. Schlosser P, Suess E, Bayer R, Rhein M (1988) 3He in the Bransfield Strait waters: indication for local injection from back-arc rifting. Deep Sea Res Part A Oceanogr Res Pap 35:1919–1935. doi: 10.1016/0198-0149(88)90117-3 CrossRefGoogle Scholar
  53. Schlosser P, Bayer R, Foldvik A, Gammelsrød T, Rohardt G, Münnich KO (1990) Oxygen 18 and helium as tracers of ice shelf water and water/ice interaction in the Weddell Sea. J Geophys Res 95:3253–3263. doi: 10.1029/JC095iC03p03253 CrossRefGoogle Scholar
  54. Shepherd A, Wingham DJ, Payne T, Skvarca P (2003) Larsen ice shelf has progressively thinned. Science 203:856–859. doi: 10.1126/science.1089768 CrossRefGoogle Scholar
  55. Soppa MA (2015) Tracking phytoplankton from space in a changing Southern Ocean. PhD thesis. University Bremen.
  56. Soppa MA, Hirata T, Silva B, Dinter T, Peeken I, Wiegmann S, Bracher A (2014) Global retrieval of diatom abundance based on phytoplankton pigments and satellite data. Remote Sens 6:10089–10106. doi: 10.3390/rs61010089 CrossRefGoogle Scholar
  57. Spreen G, Kaleschke L, Heygster G (2008) Sea ice remote sensing using AMSR-E 89-GHz channels. J Geophys Res 113:C02S03. doi: 10.1029/2005JC003384 Google Scholar
  58. Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008) Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res Part II Top Stud Oceanogr 55:2041–2058. doi: 10.1016/j.dsr2.2008.04.026 CrossRefGoogle Scholar
  59. Sudre J, Garçon V, Provost C, Sennéchael N, Huhn O, Lacombe M (2011) Short-term variations of deep water masses in Drake Passage revealed by a multiparametric analysis of the ANT-XXIII/3 bottle data. Deep Sea Res Part II 58:2592–2612. doi: 10.1016/j.dsr2.2011.01.005 CrossRefGoogle Scholar
  60. Sültenfuß J, Roether W, Rhein M (2009) The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water. Isot Environ Health Stud 45:83–95. doi: 10.1080/10256010902871929 CrossRefGoogle Scholar
  61. Thomas R et al (2004) Accelerated sea-level rise from West Antarctica. Science 306:255–258. doi: 10.1126/science.1099650 CrossRefPubMedGoogle Scholar
  62. Tomczak M Jr (1981) A multi-parameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing. Prog Oceanogr 10:147–177. doi: 10.1016/0079-6611(81)90010-0 CrossRefGoogle Scholar
  63. Tomczak M Jr, Large DGB (1989) Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean. J Geophys Res 94:16141–16149. doi: 10.1029/JC094iC11p16141 CrossRefGoogle Scholar
  64. Turner J et al (2009) Antarctic climate change and the environment. SCAR, Scott Polar Research Institute, CambridgeGoogle Scholar
  65. Vaughan DG (2006) Recent trends in melting conditions on the Antarctic peninsula and their implications for ice-sheet mass balance and sea level Arctic. Antarct Alpine Res 38:147–152. doi: 10.1657/1523-0430(2006)038[0147:RTIMCO]2.0.CO;2 CrossRefGoogle Scholar
  66. Vaughan DG et al (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274. doi: 10.1023/A:1026021217991 CrossRefGoogle Scholar
  67. Vernet M et al (2008) Primary production within the sea-ice zone west of the Antarctic Peninsula: I—sea ice, summer mixed layer, and irradiance. Deep Sea Res Part II 55:2068–2085. doi: 10.1016/j.dsr2.2008.05.021 CrossRefGoogle Scholar
  68. Waugh DW, Hall TM, Haine TWN (2003) Relationships among tracer ages. J Geophys Res 180:3138. doi: 10.1029/2002JC001325 CrossRefGoogle Scholar
  69. Waugh DW, Haine TWN, Hall TM (2004) Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean. Deep Sea Res Part I 51:1475–1491. doi: 10.1016/j.dsr.2004.06.011 CrossRefGoogle Scholar
  70. Well R, Roether W (2003) Neon distribution in South Atlantic and South Pacific waters. Deep Sea Res Part I 50:721–735. doi: 10.1016/S0967-0637(03)00058-X CrossRefGoogle Scholar
  71. Well R, Lupton J, Roether W (2001) Crustal helium in deep Pacific waters. J Geophys Res 106:14165–14177. doi: 10.1029/1999JC000279 CrossRefGoogle Scholar
  72. Weppernig R, Schlosser P, Khatiwala S, Fairbanks RG (1996) Isotope data from Ice Station Weddell: implications for deep water formation in the Weddell Sea. J Geophys Res 101:25723–25739. doi: 10.1029/96JC01895 CrossRefGoogle Scholar
  73. Wilson MFJ, O’Connell B, Brown C, Guinan JC, Grehan AJ (2007) Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar Geodesy 30:3–35. doi: 10.1080/01490410701295962 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.Institute of Environmental PhysicsUniversity of BremenBremenGermany
  3. 3.Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine HannoverBuesumGermany

Personalised recommendations