Polar Biology

, Volume 39, Issue 8, pp 1369–1379 | Cite as

Molecular data support the existence of two species of the Antarctic fish genus Cryodraco (Channichthyidae)

  • Alex Dornburg
  • Ron I. Eytan
  • Sarah Federman
  • Jillian N. Pennington
  • Andrew L. Stewart
  • Christopher D. Jones
  • Thomas J. Near
Original Paper


Antarctic notothenioids represent one of the few strongly supported examples of adaptive radiation in marine fishes. The extent of population connectivity and structure is unknown for many species, thereby limiting our understanding of the factors that underlie speciation dynamics in this radiation. Here, we assess the population structure of the widespread species Cryodraco antarcticus and its sister species Cryodraco atkinsoni, whose taxonomic status is currently debated. Combining both population genetic and phylogenetic approaches to species delimitation, we provide evidence that C. atkinsoni is a distinct species. Our analyses show that C. atkinsoni and C. antarcticus are recently diverged sister lineages, and the two species differ with regard to patterns of population structure. A systematic and accurate account of species diversity is a critical prerequisite for investigations into the complex processes that underlie the history of speciation in the notothenioid adaptive radiation.


Notothenioidei Pelagic larval dispersal Species delimitation Icefish 



Fieldwork was facilitated through the United States Antarctic Marine Living Resources Program and the officers and crew of the RV Yuzhmorgeologia, the 2004 ICEFISH cruise aboard the RVIB Nathaniel B. Palmer, and the 2008 IPY/CAML expedition aboard the RV Tangaroa funded by the New Zealand Government. Specimens and data collected by and made available through the New Zealand International Polar Year-Census of Antarctic Marine Life Project are gratefully acknowledged. Field and laboratory support was provided by H. W. Detrich, J. Kendrick, K.-H. Kock, K. L. Kuhn, and J. A. Moore. This research was funded from a NSF grant awarded to T.J.N. (PLR-1341661). All sequence alignment and analysis files used in this study have been archived on Zenodo (DOI: 10.5281/zenodo.35673).

Supplementary material

300_2015_1859_MOESM1_ESM.docx (99 kb)
Supplementary material 1 (DOCX 99 kb)
300_2015_1859_MOESM2_ESM.pdf (1.2 mb)
Supplementary material 2 (PDF 1222 kb)
300_2015_1859_MOESM3_ESM.pdf (323 kb)
Supplementary material 3 (PDF 322 kb)
300_2015_1859_MOESM4_ESM.pdf (1.4 mb)
Supplementary material 4 (PDF 1388 kb)
300_2015_1859_MOESM5_ESM.pdf (1.4 mb)
Supplementary material 5 (PDF 1391 kb)
300_2015_1859_MOESM6_ESM.fasta (22 kb)
Supplementary material 6 (FASTA 23 kb)
300_2015_1859_MOESM7_ESM.docx (58 kb)
Supplementary material 7 (DOCX 58 kb)


  1. Allcock AL et al (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res Part II 58:242–249CrossRefGoogle Scholar
  2. Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 29:2157–2167CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baele G, Li WLS, Drummond AJ, Suchard MA, Lemey P (2013) Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol Biol Evol 30:239–243CrossRefPubMedGoogle Scholar
  4. Balushkin AV (1996) Similarity of family Channichthyidae (Notothenioidei, Perciformes), with remarks on the species composition of the family and the description of a new species from the Kerguelen Archipelago. J Ichthyol 36:1–10Google Scholar
  5. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1255–1256PubMedGoogle Scholar
  6. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  7. Cziko PA, Cheng C-HC (2006) A new species of nototheniid (Perciformes: Notothenioidei) fish from McMurdo Sound. Antarct Copeia 2006:752–759CrossRefGoogle Scholar
  8. Damerau M, Matschiner M, Salzburger W, Hanel R (2012) Comparative population genetics of seven notothenioid fish species reveals high levels of gene flow along ocean currents in the southern Scotia Arc. Antarct Polar Biol 35:1073–1086CrossRefGoogle Scholar
  9. Dettaï A et al (2011) The actinopterygian diversity of the CEAMARC cruises: barcoding and molecular taxonomy as a multi-level tool for new findings. Deep-Sea Res Part II 58:250–263CrossRefGoogle Scholar
  10. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  11. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:699–710CrossRefGoogle Scholar
  12. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361CrossRefGoogle Scholar
  13. Eastman JT (1985) The evolution of neutrally buoyant notothenioid fishes: their specializations and potential interactions in the Antarctic marine food web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 430–436CrossRefGoogle Scholar
  14. Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  15. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107CrossRefGoogle Scholar
  16. Eastman JT, Clarke A (1998) A comparison of adaptive radiations of Antarctic fish with those of non-Antarctic fish. In: Di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Milano, pp 3–26CrossRefGoogle Scholar
  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  19. Eytan RI, Hellberg ME (2010) Nuclear and mitochondrial sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes. Evolution 64:3380–3397CrossRefPubMedGoogle Scholar
  20. Eytan RI, Hayes M, Arbour-Reily P, Miller M, Hellberg ME (2009) Nuclear sequences reveal mid-range isolation of an imperilled deep-water coral population. Mol Ecol 18:2375–2389CrossRefPubMedGoogle Scholar
  21. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefPubMedPubMedCentralGoogle Scholar
  22. Flot JF (2010) SeqPHASE: a web tool for interconverting PHASE input/output files and FASTA sequence alignments. Mol Ecol Resour 10:162–166CrossRefPubMedGoogle Scholar
  23. Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471CrossRefPubMedGoogle Scholar
  24. Hein J, Schierup MH, Wiuf C (2005) Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford University Press, OxfordGoogle Scholar
  25. Hubert N, Delrieu-Trottin E, Irisson J-O, Meyer C, Planes S (2010) Identifying coral reef fish larvae through DNA barcoding: a test case with the families Acanthuridae and Holocentridae. Mol Phylogenet Evol 55:1195–1203CrossRefPubMedGoogle Scholar
  26. Huelsenbeck JP, Andolfatto P, Huelsenbeck ET (2011) Structurama: Bayesian inference of population structure. Evol Bioinf Online 7:55CrossRefGoogle Scholar
  27. Hureau JC (1985) Nototheniidae. In: Fischer W, Hureau JC (eds) FAO species identification sheets for fishery purposes: Southern Ocean (Fishing areas 48, 58 and 88) (CCAMLR Convention Area), vol 2. FAO, Rome, pp 233–471Google Scholar
  28. Ivanova NV, Zemlak TS, Hanner RH, Hebert PD (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548CrossRefGoogle Scholar
  29. Iwami T, Kock K-H (1990) Channichthyidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, pp 381–399Google Scholar
  30. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  31. Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefGoogle Scholar
  34. Kearse M et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kocher TD, Conroy JA, McKaye KR, Stauffer JR, Lockwood SF (1995) Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. Mol Phylogenet Evol 4:420–432CrossRefPubMedGoogle Scholar
  36. Kock KH (1992) Antarctic fish and fisheries. Studies in polar research. Cambridge University Press, CambridgeGoogle Scholar
  37. Kock KH (2005) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part I. Polar Biol 28:862–895CrossRefGoogle Scholar
  38. Kock K-H, Jones CD (2002) The biology of the icefish Cryodraco antarcticus Dollo, 1900 (Pisces, Channichthyidae) in the southern Scotia Arc (Antarctica). Polar Biol 25:416–424Google Scholar
  39. Kock KH, Jones CD (2005) Fish stocks in the southern Scotia Arc region—a review and prospects for future research. Rev Fish Sci 13:75–108CrossRefGoogle Scholar
  40. La Mesa M, Vacchi M, Iwami T, Eastman JT (2002) Taxonomic studies of the Antarctic icefish genus Cryodraco Dollo, 1900 (Notothenioidei: Channichthyidae). Polar Biol 25:384–390Google Scholar
  41. La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338CrossRefGoogle Scholar
  42. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701CrossRefPubMedGoogle Scholar
  43. Lautredou A-C, Bonillo C, Denys G, Cruaud C, Ozouf-Costaz C, Lecointre G, Dettai A (2010) Molecular taxonomy and identification within the Antarctic genus Trematomus (Notothenioidei, Teleostei): how valuable is barcoding with COI? Polar Sci 4:333–352CrossRefGoogle Scholar
  44. Lopez JA, Chen WJ, Ortí G (2004) Esociform phylogeny. Copeia 2004:449–464CrossRefGoogle Scholar
  45. Marino I et al (2013) Evidence for past and present hybridization in three Antarctic icefish species provides new perspectives on an evolutionary radiation. Mol Ecol 22:5148–5161CrossRefPubMedGoogle Scholar
  46. Matschiner M, Hanel R, Salzburger W (2009) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587CrossRefPubMedGoogle Scholar
  47. Matschiner M, Hanel R, Salzburger W (2011) On the origin and trigger of the notothenioid adaptive radiation. Plos ONE 6. doi: 10.1371/journal.pone.0018911
  48. Miller RG (1993) A history and atlas of the fishes of the Antarctic Ocean. Foresta Institute for Ocean and Mountain Studies, Carson CityGoogle Scholar
  49. Near TJ et al (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci USA 109:3434–3439CrossRefPubMedPubMedCentralGoogle Scholar
  50. Norman JR (1938) Coast fishes. Part III. The Antarctic zone. Discov Rep 18:1–104CrossRefGoogle Scholar
  51. Papetti C, Pujolar JM, Mezzavilla M, La Mesa M, Rock J, Zane L, Patarnello T (2012) Population genetic structure and gene flow patterns between populations of the Antarctic icefish Chionodraco rastrospinosus. J Biogeogr 39:1361–1372CrossRefGoogle Scholar
  52. Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420CrossRefPubMedGoogle Scholar
  53. Pegg GG, Sinclair B, Briskey L, Aspden WJ (2006) MtDNA barcode identification of fish larvae in the southern Great Barrier Reef-Australia. Sci Mar 70:7–12CrossRefGoogle Scholar
  54. Pons J et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609CrossRefPubMedGoogle Scholar
  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  56. Rambaut A, Drummond AJ (2003) Tracer, MCMC trace analysis package, 1.5 edn.
  57. Regan CT (1913) The Antarctic fishes of the Scottish National Antarctic Expedition. Trans R Soc Edinb 49:229–292CrossRefGoogle Scholar
  58. Regan CT (1914) Fishes. British Antarctic Terra Nova Expedition, 1910, natural history report. Zoology 1:1–54Google Scholar
  59. Reid NM, Carstens BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12:196CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rock J, Costa F, Walker D, North A, Hutchinson W, Carvalho G (2008) DNA barcodes of fish of the Scotia Sea, Antarctica indicate priority groups for taxonomic and systematics focus. Antarct Sci 20:253–262CrossRefGoogle Scholar
  61. Rutschmann S, Matschiner M, Damerau M, Muschick M, Lehmann MF, Hanel R, Salzburger W (2011) Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol Ecol 20:4707–4721CrossRefPubMedGoogle Scholar
  62. Shandikov GA, Eakin RR (2013) Pogonophryne neyelovi, a new species of Antarctic short-barbeled plunderfish (Perciformes, Notothenioidei, Artedidraconidae) from the deep Ross Sea. ZooKeys 296:59–77Google Scholar
  63. Shandikov GA, Eakin RR, Usachev S (2013) Pogonophryne tronio, a new species of Antarctic short-barbeled plunderfish (Perciformes: Notothenioidei: Artedidraconidae) from the deep Ross Sea with new data on Pogonophryne brevibarbata. Polar Biol 36:273–289CrossRefGoogle Scholar
  64. Smith PJ, Steinke D, Dettai A, McMillan P, Welsford D, Stewart A, Ward RD (2012) DNA barcodes and species identifications in Ross Sea and Southern Ocean fishes. Polar Biol 35:1297–1310CrossRefGoogle Scholar
  65. Spodareva V, Balushkin A (2014) Description of a new species of plunderfish of genus Pogonophryne (Perciformes: Artedidraconidae) from the Bransfield Strait (Antarctica) with a key for the identification of species of the group “marmorata”. J Ichthyol 54:1–6CrossRefGoogle Scholar
  66. Steinke D, Zemlak TS, Hebert PD (2009) Barcoding Nemo: DNA-based identifications for the ornamental fish trade. PLoS ONE 4:e6300CrossRefPubMedPubMedCentralGoogle Scholar
  67. Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169CrossRefPubMedPubMedCentralGoogle Scholar
  68. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462CrossRefPubMedPubMedCentralGoogle Scholar
  69. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  71. Vacchi M, La Mesa M (1997) Morphometric analysis of Cryodraco specimens (Notothenioidei: Channichthyidae) from Terra Nova Bay, Ross Sea. Cybium 21:363–368Google Scholar
  72. Valdez-Moreno M, Quintal-Lizama C, Gómez-Lozano R, del Carmen G-RM (2012) Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS ONE 7:e36636CrossRefPubMedPubMedCentralGoogle Scholar
  73. Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968CrossRefGoogle Scholar
  74. Waite ER (1916) Fishes Australasian Antarctic Expedition 1911–1914. Sci Rep Ser C Zool Bot 3:3–92Google Scholar
  75. Ward RD, Hanner R, Hebert PD (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356CrossRefPubMedGoogle Scholar
  76. Young EF et al (2015) Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species. Evol Appl 8:486–509CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zane L et al (2006) Demographic history and population structure of the Antarctic silverfish Pleuragramma antarcticum. Mol Ecol 15:4499–4511CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alex Dornburg
    • 1
  • Ron I. Eytan
    • 2
  • Sarah Federman
    • 3
  • Jillian N. Pennington
    • 4
  • Andrew L. Stewart
    • 5
  • Christopher D. Jones
    • 6
  • Thomas J. Near
    • 3
    • 7
  1. 1.Ichthyology UnitNorth Carolina Museum of Natural SciencesRaleighUSA
  2. 2.Department of Marine BiologyTexas A&M University at GalvestonGalvestonUSA
  3. 3.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA
  4. 4.Ezra Stiles CollegeYale UniversityNew HavenUSA
  5. 5.Museum of New Zealand Te Papa TongarewaWellingtonNew Zealand
  6. 6.Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationLa JollaUSA
  7. 7.Peabody Museum of Natural HistoryYale UniversityNew HavenUSA

Personalised recommendations