Polar Biology

, Volume 39, Issue 5, pp 819–828 | Cite as

Organic carbon and biogenic silica in marine sediments in the vicinities of the Antarctic Peninsula: spatial patterns across a climatic gradient

Original Paper

Abstract

To assess whether sea floor sediment reflects the characteristics of the upper water column, organic carbon (OC) and biogenic silica (bSi) were measured in seventeen 5-cm-long sediment cores recovered within a climatic gradient from the northwestern Weddell Sea (WS) to the Drake Passage (DP) across the Bransfield Strait (BS). Climate settings in the study area vary from dry and cold (polar) conditions with seasonal sea ice coverage in the WS to a more humid and warm (oceanic) environment where no seasonal sea ice develops in the DP, with the BS as transitional zone undergoing seasonal sea ice coverage. OC varied between 0.2 and 1.7 % and represented more than 90 % of the total carbon, and bSi varied between 2 and 13 %. The profiles of both variables along the sediment cores suggested that the surface mixed layer is at least 5 cm thick. The inventories of the upper 5 cm of the sediment column were calculated for both variables. Regional averages were significantly lower for OC in DP samples and higher for bSi in the BS. These results suggested relatively high bSi export to the seabed in the BS, higher degradation for OC in the DP and lower bSi export from the euphotic zone in the WS. The observations made evident that the biogenic matter contents in the sediment not necessarily replicate their production characteristics at the upper ocean even across strong climatic gradients. The results may provide a useful baseline for paleo-reconstructions in a rapidly changing environment.

Keywords

Antarctic Peninsula Pelagic–benthic coupling Biogenic silica Organic carbon Sediment 

References

  1. Abelmann A, Gersonde R (1991) Biosiliceous particle flux in the Southern Ocean. Mar Chem 35:503–536CrossRefGoogle Scholar
  2. Anderson JB (1991) The Antarctic continental shelf: results from marine geological and geophysical investigations. In: Tingey RJ (ed) The geology of Antarctica. Clarendon Press, Malta, pp 285–334Google Scholar
  3. Anderson JB, Smith MJ (1989) Formation of modern sand-rich facies by marine currents on the Antarctic continental shelf. In: Morton RA, Nummedal D (eds) GCSSEPM foundation seventh annual research conference proceedings, Houston, pp 41–52Google Scholar
  4. Ardelan MV, Holm-Hansen O, Hewes CD, Reiss CS, Silva NS, Dulaiova H, Steinnes E, Sakshaug E (2010) Natural iron enrichment around the Antarctic Peninsula in the Southern Ocean. Biogeosci 7:11–25CrossRefGoogle Scholar
  5. Arndt JE, Schenke H-W, Jakobsson M, Nitsche FO, Buys G, Goleby B, Rebesco M, Bohoyo F, Hong J, Black J, Greku R, Udintsev G, Barrios F, Reynoso-Peralta W, Taisei M, Wigley R (2013) The international bathymetric chart of the Southern Ocean (IBCSO) Version 1.0—a new bathymetric compilation covering circum-Antarctic waters. Geophys Res Lett. doi:10.1002/grl.50413 Google Scholar
  6. Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486CrossRefGoogle Scholar
  7. Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367CrossRefPubMedGoogle Scholar
  8. Arrigo KA, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res. doi:10.1029/2007JC004551 Google Scholar
  9. Arrigo KR, Mills MM, Kropuenske LR, van Dijken GL, Alderkamp A-C, Robinson DH (2010) Photophysiology in two major Southern Ocean phytoplankton taxa: photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under different irradiance levels. Integr Comp Biol. doi:10.1093/icb/icq021 PubMedGoogle Scholar
  10. Asper VL, Smith WO Jr (2003) Abundance, distribution and sinking rates of aggregates in the Ross Sea, Antarctica. Deep Sea Res I 50:131–150CrossRefGoogle Scholar
  11. Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103CrossRefPubMedGoogle Scholar
  12. Barnett PRO, Watson J, Conelly D (1984) A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol Acta 7(4):399–408Google Scholar
  13. Borges Mendes CR, Silva de Souza M, Tavano Garcia VM, Costa Leal M, Brotas V, Eiras Garcia CA (2012) Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep Sea Res I 65:1–14CrossRefGoogle Scholar
  14. Cape MR, Vernet M, Kahru M, Spreen G (2014) Polynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapse. J Geophys Res 119:572–594CrossRefGoogle Scholar
  15. Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J Geophys Res. doi:10.1029/2007JC004257 Google Scholar
  16. DeMaster DJ (1991) Measuring biogenic silica in marine sediments and suspended matter. Geophys Monogr 63:363–367Google Scholar
  17. DeMaster DJ (2002) The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget. Deep Sea Res II 49:3155–3167CrossRefGoogle Scholar
  18. DeMaster DJ, Nelson TM, Harden SL, Nittrouer CA (1991) The cycling and accumulation of biogenic silica and organic carbon in Antarctic deep-sea and continental margin environments. Mar Chem 35:489–502CrossRefGoogle Scholar
  19. DeMaster DJ, Dunbar RB, Gordon LI, Leventer AR, Morrison JM, Nelson DM, Nittrouer CA, Smith WO Jr (1992) Cycling and accumulation of biogenic silica and organic matter in high-latitude environments: the Ross Sea. Oceanography 5:146–153CrossRefGoogle Scholar
  20. DeMaster DJ, Ragueneau O, Nittrouer CA (1996) Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments: the Ross Sea. J Geophys Res 101:18501–18518CrossRefGoogle Scholar
  21. Detoni AMS, Silva de Souza M, Garcia CAE, Tavano VM, Mata MM (2015) Environmental conditions during phytoplankton blooms in the vicinity of James Ross Island, east of the Antarctic Peninsula. Polar Biol 38:1111–1127CrossRefGoogle Scholar
  22. Dinniman M, Klinck JM, Hofmann EE (2012) Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J Clim 25:4799–4816CrossRefGoogle Scholar
  23. DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, Barry JP, VanWoert ML, Dunbar RB (2000) Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404:595–598CrossRefPubMedGoogle Scholar
  24. Dorschel B, Gutt J, Piepenburg D, Schröder M, Arndt JE (2014) The influence of the geomorphological and sedimentological settings on the distribution of epibenthic assemblages on a flat topped hill on the over-deepened shelf of the western Weddell Sea (Southern Ocean). Biogeosciences 11:3797–3817. doi:10.5194/bg-11-3797-2014 CrossRefGoogle Scholar
  25. Dorschel B, Gutt J, Huhn O, Bracher A, Huntemann M, Huneke W, Schröder M (this volume) Environmental parameters to characterize the benthic regions around the Antarctic Peninsula. Polar BiolGoogle Scholar
  26. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the west Antarctic Peninsula. Philos Trans R Soc B Biol Sci 362:67–94CrossRefGoogle Scholar
  27. Garrison DL, Close AR, Reimnitz E (1989) Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarct Sci 4:313–316Google Scholar
  28. Gonçalves-Araujo R, Silva de Souza M, Tavano VM, Eiras Garcia CA (2015) Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Antarctica. J Mar Syst 142:1–15CrossRefGoogle Scholar
  29. Griffith TW, Anderson JB (1989) Climatic control of sedimentation in bays and fjords of the northern Antarctic Peninsula. Mar Geol 85:181–204CrossRefGoogle Scholar
  30. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  31. Harden SL, DeMaster DJ, Nittrouer CA (1992) Developing sediment geochronologies for high-latitude continental shelf deposits: a radiochemical approach. Mar Geol 103:69–97CrossRefGoogle Scholar
  32. Holm-Hansen O, Mitchell BG (1991) Spatial and temporal distribution of phytoplankton and primary production in western Bransfield Strait region. Deep Sea Res 38:961–980CrossRefGoogle Scholar
  33. Isla E, Masqué P, Palanques A, Sánchez-Cabeza JA, Bruach JM, Guillén J, Puig P (2002) Sediment accumulation rates and carbon burial in the bottom sediment of a high productivity area: Gerlache Strait (Antarctica). Deep Sea Res II 49:3275–3287CrossRefGoogle Scholar
  34. Isla E, Masqué P, Palanques A, Guillén J, Puig P, Sanchez-Cabeza JA (2004) Sedimentation of biogenic constituents during the last century in western Bransfield and Gerlache Straits, Antarctica: a relation to currents, primary production, and sea floor relief. Mar Geol 209:265–277CrossRefGoogle Scholar
  35. Isla E, Gerdes D, Palanques A, Gili J-M, Arntz WE, König-Langlo G (2009) Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: a stormy impulse for the biological pump. Mar Geol 259:59–72CrossRefGoogle Scholar
  36. Jacobs SS (1989) Marine controls on modern sedimentation on the Antarctic continental shelf. Mar Geol 85:121–153CrossRefGoogle Scholar
  37. Kang S-H, Kang J-S, Lee S, Chung KH, Kim D, Park MG (2001) Antarctic phytoplankton assemblages in the marginal ice zone of the northwestern Weddell Sea. J Plankton Res 23:333–352CrossRefGoogle Scholar
  38. Karl DM, Tilbrook BD, Tien G (1991) Seasonal coupling of organic matter production and particle flux in the western Bransfield Strait, Antarctica. Deep Sea Res 38:1097–1126CrossRefGoogle Scholar
  39. Lannuzel D, Schoemann V, Dumont I, Content M, de Jong J, Tison J-L, Delille B, Becquevort S (2013) Effect of melting Antarctic sea ice on the fate of microbial communities studied in microcosms. Polar Biol 36:1483–1497CrossRefGoogle Scholar
  40. Leventer A (1991) Sediment trap diatom assemblages from the northern Antarctic Peninsula region. Deep Sea Res 38:1127–1143CrossRefGoogle Scholar
  41. Leynaert A, Nelson DM, Queguiner B, Tréguer P (1993) The silica cycle in the Antarctic Ocean: is the Weddell Sea atypical? Mar Ecol Prog Ser 96:1–15CrossRefGoogle Scholar
  42. Liebezeit G (1987) Particulate carbohydrate fluxes in the Bransfield Strait and the Drake Passage. Mar Chem 20:255–264CrossRefGoogle Scholar
  43. Lizotte MP (2001) The contributions of sea ice algae to Antarctic marine primary production. Am Zool 41:57–73Google Scholar
  44. Lockhart SJ, Jones CD (2008) Biogeographic patterns of benthic invertebrate megafauna on shelf areas within the Southern Ocean Atlantic sector. CCAMLR Sci 15:167–192Google Scholar
  45. Loeb V, Hofmann EE, Klinck JM, Holm-Hansen O (2010) Hydrographic control of the marine ecosystem in the South Shetland-Elephant Island and Bransfield Strait region. Deep Sea Res II 57:519–542CrossRefGoogle Scholar
  46. Marshall G, Orr A, van Lipzing NPM, King JO (2006) The impact of a changing southern hemisphere annular mode on Antarctic Peninsula summer temperatures. J Climatol 19:4388–5404CrossRefGoogle Scholar
  47. Martinson DG, Stammerjohn SE, Iannuzzi RA, Smith RC, Vernet M (2008) Western Antarctic Peninsula physical oceanography and spatio–temporal variability. Deep Sea Res II 55:1964–1987CrossRefGoogle Scholar
  48. Masqué P, Isla E, Sanchez-Cabeza JA, Palanques A, Bruach JM, Puig P, Guillén J (2002) Sediment accumulation rates and carbon fluxes to bottom sediments at the Western Bransfield Strait (Antarctica). Deep Sea Res II 49:921–933CrossRefGoogle Scholar
  49. Mincks SL, Smith CR, DeMaster DJ (2005) Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment “food bank”. Mar Ecol Prog Ser 300:3–19CrossRefGoogle Scholar
  50. Moffat C, Owens B, Beardsley RC (2009) On the characteristics of circumpolar deep water intrusions to the west Antarctic Peninsula continental shelf. J Geophys Res 114:C05017. doi:10.1029/2008JC004955 Google Scholar
  51. Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473CrossRefPubMedGoogle Scholar
  52. Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Res 36:1415–1426CrossRefGoogle Scholar
  53. Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycle 9:359–372CrossRefGoogle Scholar
  54. Nelson DM, DeMaster DJ, Dunbar RB, Smith WO Jr (1996) Cycling of organic carbon and biogenic silica in the Southern Ocean: estimates of water-column and sedimentary fluxes on the Ross Sea continental shelf. J Geophys Res 101:18519–18532CrossRefGoogle Scholar
  55. Niiler P, Illeman J, Hu JH (1990) RACER: lagrangian drifter observations of surface circulation in the Gerlache and Bransfield Straits. Antarct J US 25:134–137Google Scholar
  56. Park MG, Yang SR, Kang S-H, Chung KH, Shim JH (1999) Phytoplankton biomass and primary production in the marginal ice zone of the northwestern Weddell Sea during austral summer. Polar Biol 21:251–261CrossRefGoogle Scholar
  57. Ragueneau O, Tréguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, François R, Heinze C, Maier-Reimer E, Martin-Jézéquel V, Nelson DM, Quéguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob Planet Change 26:317–365CrossRefGoogle Scholar
  58. Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol 11:239–248CrossRefGoogle Scholar
  59. Sangrà P, Gordo C, Hernández-Arencibia M, Marrero-Díaz A, Rodríguez-Santana A, Stegner A, Martínez-Marrero A, Pelegrí JL, Pichon T (2011) The Bransfield current system. Deep Sea Res I 58:390–402CrossRefGoogle Scholar
  60. Schlüter M, Rutgers van der Loeff MM, Holby O, Kuhn G (1998) Silica cycle in surface sediments of the South Atlantic. Deep Sea Res I 45:1085–1109CrossRefGoogle Scholar
  61. Schnack-Schiel S, Isla E (2005) The role of zooplankton in the pelagic-benthic coupling of the Southern Ocean. Sci Mar 69(2):39–55Google Scholar
  62. Schröder M, Hellmer HH, Absy JM (2002) On the near-bottom variability in the northwestern Weddell Sea. Deep Sea Res II 49:4767–4790CrossRefGoogle Scholar
  63. Tréguer P, Nelson DM, Gueneley S, Zeyons C, Morvan J, Buma A (1990) The distribution of biogenic and lithogenic silica and the composition of particulate organic matter in the Scotia Sea and the Drake Passage during autumn 1987. Deep Sea Res 5:833–851CrossRefGoogle Scholar
  64. Tréguer P, Lindner L, van Bennekom AJ, Leynaert A, Panouse M, Jacques G (1991) Production of biogenic silica in the Weddell-Scotia Seas measured with 32 Si. Limnol Oceanogr 36:1217–1227CrossRefGoogle Scholar
  65. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  66. Van Bennekom AJ, Burna AGJ, Nolting RF (1991) Dissolved aluminium in the Weddell-Scotia confluence and effect of Al on the dissolution kinetics of biogenic silica. Mar Chem 35:423–434CrossRefGoogle Scholar
  67. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274CrossRefGoogle Scholar
  68. von Bodungen B (1986) Phytoplankton growth and krill grazing during spring in the Bransfield Strait, Antarctica—implications from sediment trap collections. Polar Biol 6:153–160CrossRefGoogle Scholar
  69. von Bodungen B, Smetacek V, Tilzer MM, Zeitzschel B (1986) Primary production and sedimentation during spring in the Antarctic Peninsula region. Deep Sea Res 33:177–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut de Ciències del Mar-CSICBarcelonaSpain

Personalised recommendations