Advertisement

Polar Biology

, Volume 39, Issue 4, pp 701–712 | Cite as

Microscopic characterization of the bacterial cell envelope of Planococcus halocryophilus Or1 during subzero growth at −15 °C

  • N. C. S. Mykytczuk
  • J. R. Lawrence
  • C. R. Omelon
  • G. Southam
  • L. G. Whyte
Original Paper

Abstract

Microbial psychrophiles continue to expand our understanding of the adaptations required to thrive in cold environments. Planococcus halocryophilus strain Or1, a gram-positive, aerobic bacterial isolate from a Canadian high Arctic permafrost active layer, divides at temperatures as low as −15 °C and high salinity of 18 % NaCl. Initial studies of P. halocryophilus Or1 identified that under subzero conditions the cell envelope changed in appearance and composition. Our goal was to further analyze these features using scanning and transmission electron microscopy (SEM, TEM), confocal laser scanning microscopy (CLSM), and scanning transmission X-ray microscopy (STXM), which showed progressive changes in cell envelope composition during growth from optimal (25 °C) down to subzero (−15 °C) temperatures. S/TEM and CLSM illustrate that growth at −15 °C coincides with increasing hydrophobicity and distinct extracellular encrustations closely associated with the cell wall. STXM analyses resolved differences in cell composition with temperature, favoring higher amounts of protein and polysaccharide at higher temperatures compared to cells grown at −15 °C that were characterized by a cell envelope comprised of 20 % calcium carbonate, 50 % peptidoglycan, and 29 % choline. Analyses of the sequenced genome found the presence of several copies of carbonic anhydrase, a protein responsible for mineralization of calcium carbonate, and transcriptomic analyses revealed increased expression of a single copy at −15 °C along with the synthesis of peptidoglycan. The unique cell features of P. halocryophilus Or1 grown at −15 °C demonstrate unusual physiology that expands our understanding of psychrophilic adaptations and provides an example of microbially mediated calcium carbonate precipitation at subzero temperatures.

Keywords

Psychrophile Arctic Cellular adaptation Carbonate precipitation 

Notes

Acknowledgments

Funding for this research was provided by the Natural Sciences and Engineering Research Council (NSERC), Canada Research Chair program (CRC), Canadian Foundation for Innovation (CFI), Polar Continental Shelf Program (PCSP), the Canadian Space Agency (CSA) Canadian Analogue Research Network (CARN) Program, and NSERC CREATE postdoctoral research/rotation support grants to NCSM and CRO. STXM data were acquired at beamline 10ID1 at the Canadian Light Source. CLS is supported by NSERC, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. We thank George D.W. Swerhone (Environment Canada) and the staff scientists at the CLS (Chithra Karunakaran, Jian Wang) for their work on the SM beamline.

Compliance with ethical standards

Conflict of interest

The authors state no conflict of interest. This article does not contain any studies with human or animal subjects.

Supplementary material

300_2015_1826_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2280 kb)

References

  1. Achal V, Pan X (2011) Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr Microbiol 62:894–902CrossRefPubMedGoogle Scholar
  2. Bakermans C (2008) Limits for microbial life at subzero temperatures. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 17–28CrossRefGoogle Scholar
  3. Bakermans C (2012) Psychrophiles: life in the cold. In: Anitori R (ed) Extremophiles: microbiology and biotechnology. Caister Academic Press, Beaverton, pp 53–76Google Scholar
  4. Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529CrossRefGoogle Scholar
  5. Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii. Microb Ecol 47:300–304CrossRefPubMedGoogle Scholar
  6. Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1998) Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl Environ Microbiol 64(10):4095–4097PubMedPubMedCentralGoogle Scholar
  7. Carillo S, Casillo A, Pieretti E, Parrilli G, Sannino F, Bayer-Giraldi M, Cosconati S, Novellino E, Ewert M, Deming JW, Lanzetta R, Marino H, Parrilli M, Randazzo A, Tutino ML, Corsaro MM (2015) A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glycol) proteins. J Am Chem Soc 137(1):179–189CrossRefPubMedGoogle Scholar
  8. Chahal N, Rajor A, Siddique R (2011) Calcium carbonate precipitation by different bacterial strains. Afr J Biotechnol 10:8359–8372Google Scholar
  9. Chen L, Shen Y, Xie A, Huang B, Jia R, Guo R, Tang W (2009) Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Cryst Growth Des 9:743–754CrossRefGoogle Scholar
  10. Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJC, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. PNAS 107:7835–7840CrossRefPubMedPubMedCentralGoogle Scholar
  11. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  12. Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dieckmann GS, Nehrke G, Papadimitriou S, Gottlicher J, Steininger R, Kennedy H, Wolf-Gladrow D, Thomas DN (2008) Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophys Res Lett 35:L08501CrossRefGoogle Scholar
  14. Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88CrossRefGoogle Scholar
  15. Dynes JJ, Lawrence JR, Korber DR, Swerhone GDW, Leppard GG, Hitchcock AP (2006a) Quantitative mapping of chlorhexidine in natural river biofilms. Sci Total Environ 369:369–383CrossRefPubMedGoogle Scholar
  16. Dynes JJ, Tyliszczak T, Araki T, Lawrence JR, Swerhone GDW, Leppard GG, West MM, Hitchcock AP (2006b) Quantitative mapping of metal species in bacterial biofilms using scanning transmission X-ray microscopy. Environ Sci Technol 40:1556–1565CrossRefPubMedGoogle Scholar
  17. Fitzsimmons LF, Flemer S Jr, Wurthmann AS, Deker PB, Sarkar IN, Wargo MJ (2011) Small-molecule inhibition of choline catabolism in Pseudomonas aeruginosa and other aerobic choline-catabolizing bacteria. Appl Environ Microbiol 77:4383–4389CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gilbert PUPA, Frazer BH, Abrecht H (2005) The organic-mineral interface in biominerals. In: Banfield JF, Nealson KH, Cervini-Silva J (eds) Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, pp 157–185Google Scholar
  19. Henke BL, Gullikson EM, Davis JC (1993) X-Ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At Data Nucl Data Tables 54:181–297CrossRefGoogle Scholar
  20. Hitchcock AP (2011) aXis2000 is written in interactive data language (IDL). It is available free for non-commercial use from http://unicorn.mcmaster.ca/aXis2000.html
  21. Hoover RB (2005) Microfossils, biominerals, and chemical biomarkers in meteorites. In: Hoover RB, Paepe RR, Yu A (eds) Perspectives in astrobiology, NATO science series: life and behavioural sciences. IOS Press, Amsterdam, pp 43–65Google Scholar
  22. Jacobsen C, Wirick S, Flynn G, Zimba C (2000) Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution. J Microscopy 197:173–184CrossRefGoogle Scholar
  23. Kets EPW, Groot MN, Galinski EA, DeBont JAM (1997) Choline and acetylcholine: novel cationic osmolytes in Lactobacillus plantarum. Appl Microbiol Biotechnol 48:94–98CrossRefGoogle Scholar
  24. Knowles EJ, Castenholz RW (2008) Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiol Ecol 66:261–270CrossRefPubMedGoogle Scholar
  25. Koprinarov IN, Hitchcock AP, McCrory CT, Childs RF (2002) Quantitative mapping of structured polymeric systems using singular value decomposition analysis of soft X-ray images. J Phys Chem B 106:5358–5364CrossRefGoogle Scholar
  26. Krembs C, Deming JW (2008) The role of exopolymers in microbial adaptation to sea ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 247–264CrossRefGoogle Scholar
  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  28. Lawrence JR, Korber DR, Neu TR (2007) Analytical imaging techniques. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology, 3rd edn. American Society for Microbiology Press, Washington, pp 40–68Google Scholar
  29. López-Cortés A (1999) Paleobiological significance of hydrophobicity and adhesion of phototrophic bacteria from microbial mats. Precambrian Res 96:25–39CrossRefGoogle Scholar
  30. Mann S (1995) Biomineralization and biomimetic materials chemistry. J Mater Chem 5:935–946CrossRefGoogle Scholar
  31. Marion GM, Millero FJ, Feistel R (2009) Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T-P models. Ocean Sci 5:285–291CrossRefGoogle Scholar
  32. Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72CrossRefPubMedGoogle Scholar
  33. McKay DS, Thomas-Keptra KL, Romanek CS, Gibson EK Jr, Vali H (1996) Search for past life on mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930CrossRefPubMedGoogle Scholar
  34. Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD (2007) Bacterial cytoplasmic membrane polarization under environmental stress. Prog Biophys Mol Biol 95:60–82CrossRefPubMedGoogle Scholar
  35. Mykytczuk NCS, Wilhelm R, Whyte LG (2012) Planococcus halocryophilus sp. nov.; an extreme subzero species from high Arctic permafrost. Int J Syst Evol Microbiol 12:347–360Google Scholar
  36. Mykytczuk NCS, Foote SJ, Omelon CR, Southam G, Lawrence J, Greer CW, Whyte LG (2013) Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISMEJ 7:1211–1226CrossRefGoogle Scholar
  37. Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding-analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313CrossRefPubMedGoogle Scholar
  38. Park JT, Uehara T (2008) How bacteria consume their own exoskeletons turnover and recycling of cell wall peptidoglycan. Microbiol Mol Biol Rev 72:211–227CrossRefPubMedPubMedCentralGoogle Scholar
  39. Perfumo A, Elsaesser A, Littmann S, Foster RA, Kuypers MMM, Cockell CS, Kminek G (2014) Epifluorescence, SEM, TEM and nanoSIMS image analysis of the cold phenotype of Clostridium psychrophilum at subzero temperatures. FEMS Microbiol Ecol 90:869–882CrossRefPubMedGoogle Scholar
  40. Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Marine Drugs 8:1779–1802CrossRefPubMedPubMedCentralGoogle Scholar
  41. Riding R (2011) Microbialites, stromatolites, and thrombolites. In: Reitner V, Thiel J (eds) Encyclopaedia of geobiology, (Encyclopaedia of earth sciences series). Springer, Heidelberg, pp 635–654Google Scholar
  42. Rivadeneyra MA, Delgado G, Ramos-Cormenzana R, Delgado R (1998) Biomineralisation of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol 149:277–287CrossRefPubMedGoogle Scholar
  43. Rivadeneyra MA, Algarra AM, Sánchez-Román M, Sánchez-Navas A, Martín-Ramos JD (2010) Amorphous Ca-phosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui. ISME J 4:922–993CrossRefPubMedGoogle Scholar
  44. Rodrigues D, Ivanova N, He Z, Huebner M, Zhou J, Tiedje J (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547CrossRefPubMedPubMedCentralGoogle Scholar
  45. Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182CrossRefGoogle Scholar
  46. Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366CrossRefPubMedGoogle Scholar
  47. Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162CrossRefPubMedGoogle Scholar
  48. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571CrossRefGoogle Scholar
  49. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 8:2731–2739CrossRefGoogle Scholar
  50. Thiemann B, Imhoff JF (1991) The effect of salt on the lipid composition of Ectothiorhodospira. Arch Microbiol 156:376–384CrossRefGoogle Scholar
  51. Vahabi A, Ramezanianpour AA, Sharafi H, Zahiri HS, Vali H, Noghabi KA (2013) Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. J Basic Microbiol 53:1–7CrossRefGoogle Scholar
  52. Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K et al (2013) Poles apart: arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS ONE 8:e63422CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yoshida N, Higashimura E, Saeki Y (2010) Catalytic biomineralization of fluorescent calcite by the thermophilic bacterium Geobacillus thermoglucosidasius. Appl Environ Microbiol 76:7322–7327CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • N. C. S. Mykytczuk
    • 1
  • J. R. Lawrence
    • 2
  • C. R. Omelon
    • 3
  • G. Southam
    • 4
  • L. G. Whyte
    • 5
  1. 1.Vale Living with Lakes CentreLaurentian UniversitySudburyCanada
  2. 2.National Hydrology Research CentreEnvironment CanadaSaskatoonCanada
  3. 3.Department of Geological SciencesThe University of Texas at AustinAustinUSA
  4. 4.School of Earth SciencesThe University of QueenslandSt. LuciaAustralia
  5. 5.Department of Natural Resource SciencesMcGill UniversityMontréalCanada

Personalised recommendations