Polar Biology

, Volume 39, Issue 5, pp 829–849 | Cite as

Macroepibenthic communities at the tip of the Antarctic Peninsula, an ecological survey at different spatial scales

  • J. GuttEmail author
  • M. C. Alvaro
  • A. Barco
  • A. Böhmer
  • A. Bracher
  • B. David
  • C. De Ridder
  • B. Dorschel
  • M. Eléaume
  • D. Janussen
  • D. Kersken
  • P. J. López-González
  • I. Martínez-Baraldés
  • M. Schröder
  • A. Segelken-Voigt
  • N. Teixidó
Original Paper


The Southern Ocean ecosystem at the Antarctic Peninsula has steep natural environmental gradients, e.g. in terms of water masses and ice cover, and experiences regional above global average climate change. An ecological macroepibenthic survey was conducted in three ecoregions in the north-western Weddell Sea, on the continental shelf of the Antarctic Peninsula in the Bransfield Strait and on the shelf of the South Shetland Islands in the Drake Passage, defined by their environmental envelop. The aim was to improve the so far poor knowledge of the structure of this component of the Southern Ocean ecosystem and its ecological driving forces. It can also provide a baseline to assess the impact of ongoing climate change to the benthic diversity, functioning and ecosystem services. Different intermediate-scaled topographic features such as canyon systems including the corresponding topographically defined habitats ‘bank’, ‘upper slope’, ‘slope’ and ‘canyon/deep’ were sampled. In addition, the physical and biological environmental factors such as sea-ice cover, chlorophyll-a concentration, small-scale bottom topography and water masses were analysed. Catches by Agassiz trawl showed high among-station variability in biomass of 96 higher systematic groups including ecological key taxa. Large-scale patterns separating the three ecoregions from each other could be correlated with the two environmental factors, sea-ice and depth. Attribution to habitats only poorly explained benthic composition, and small-scale bottom topography did not explain such patterns at all. The large-scale factors, sea-ice and depth, might have caused large-scale differences in pelagic benthic coupling, whilst small-scale variability, also affecting larger scales, seemed to be predominantly driven by unknown physical drivers or biological interactions.


Southern Ocean Benthic habitats Ecoregions Bottom topography Canyon systems 



Thanks are due to the SCAR biology programme ‘Antarctic Thresholds—Ecosystem Resilience and Adaptation’(AnT-ERA) due to financial support of a post-expedition workshop held in Dijon, France, in 2014 and to the Deutsche Forschungsgemeinschaft for financial support of project JA-1063/17-1. ME was funded by the Actions thématiques du Muséum ‘Emergences’ of the Muséum national s’Histoire naturelle, Paris, France, and the Institut polaire français Paul Emile Victor (IPEV). Satellite data were provided by NASA (SeaWiFS, MODIS), ESA (MERIS, GlobColour) and PHAROS Group of University of Bremen. Marcus Huntemann (University of Bremen) helped with the extraction of satellite sea-ice concentration data. Support of cruise participation of PLG, IMB, NT by Spanish Project ECOWED (CTM2012-39350-C02-01).


  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  2. Anderson MJ, Gorley R, Clarke K (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, Plymouth, p 214Google Scholar
  3. Arndt JE, Schenke HW, Jakobsson M, Nitsche FO, Buys G, Goleby B, Rebesco M, Bohoyo F, Hong J, Black J, Greku R, Udintsev G, Barrios F, Reynoso-Peralta W, Taisei M, Wigley R (2013) The international bathymetric chart of the Southern Ocean (IBCSO) Version 1.0: a new bathymetric compilation covering circum-Antarctic waters. Geophys Res Lett. doi: 10.1002/grl.50413 Google Scholar
  4. Atkinson A, Siegel V, Pakhomov EA, Rothery P, Loeb V, Ross RM, Quetin LB, Schmidt K, Fretwell P, Murphy EJ, Tarling GA, Fleming AH (2008) Oceanic circumpolar habitats of Antarctic krill. Mar Ecol Prog Ser 362:1–23CrossRefGoogle Scholar
  5. Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc B Biol Sci 362:11–38CrossRefGoogle Scholar
  6. Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim Res 37(2–3):149–163CrossRefGoogle Scholar
  7. Björgo E, Johannessen OM, Miles MW (1997) Analysis of merged SMMR-SSMI time series of Arctic and Antarctic sea ice parameters 1978–1995. Geophys Res Lett 24(4):413–416. doi: 10.1029/96GL04021 CrossRefGoogle Scholar
  8. Bo M, Canese S, Spaggiari C, Pusceddu A, Bertolino M, Angioolillo M, Giusti M, Loreto MF, Salvti E, Greco S, Bavestrello G (2012) Deep coral oases in the South Tyrrhenian Sea. PLoS ONE 7(11):e49870. doi: 10.1371/journal.pone.0049870 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buesseler KO, McDonnell AMP, Schofield OME, Steinberg DK, Ducklow HW (2010) High particle export over the continental shelf of the west Antarctic Peninsula. Geophys Res Lett 37:L22606. doi: 10.1029/2010GL045448 CrossRefGoogle Scholar
  10. Burrough PA, McDonell RA (1998) Principles of geographical information systems. Oxford University Press, New YorkGoogle Scholar
  11. Camerlenghi A, Domack EW, Rebesco M, Gilbert R, Ishman S, Leventer A, Brachfeld S, Drake A (2001) Glacial morphology and post-glacial contourites in northern Prince Gustav Channel (NW Weddell Sea, Antarctica). Mar Geophys Res 22:417–443CrossRefGoogle Scholar
  12. Cape MR, Vernet M, Kahru M, Spreen G (2014) Polynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapse. J Geophys Res Oceans 119:572–594CrossRefGoogle Scholar
  13. Casanovas P, Naveen R, Forrest S, Poncet J, Lynch HJ (2015) A comprehensive coastal seabird survey maps out the front lines of ecological change on the western Antarctic Peninsula. Polar Biol 38:927–940CrossRefGoogle Scholar
  14. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  15. Clarke A, Harris CM (2003) Polar marine ecosystems: major threads and future change. Environ Conserv 30:1–25CrossRefGoogle Scholar
  16. Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans R Soc B Biol Sci 362:149–166CrossRefGoogle Scholar
  17. Clarke A, Griffiths HJ, Barnes DKA, Meredith MP, Grant SM (2009) Spatial variation in seabed temperatures in the Southern Ocean: implications for benthic ecology and biogeography. J Geophys Res 114:G03003. doi: 10.1029/2008JG000886 Google Scholar
  18. Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data, J Geophys Res 113:C02S07. doi: 10.1029/2007JC004257
  19. Convey P, Bindschadler R, di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP, Turner J, ACCE consortium (2010) Antarctic climate change and the environment. Antarct Sci 21:541–563. doi: 10.1016/j.dsr2.2010.05.024 CrossRefGoogle Scholar
  20. Costello MJ (2009) Distinguishing marine habitat classification concepts for ecological data management. Mar Ecol Prog Ser 397:253–268CrossRefGoogle Scholar
  21. Cummings V, Thrush S, Norkko A, Hewitt J, Funnell G, Schwarz A-M (2006) Accounting for local scale variability in benthos: implications for future assessments of latitudinal trends in the coastal Ross Sea. Antarct Sci 18(4):633–644CrossRefGoogle Scholar
  22. Cunha MR, Paterson GLJ, Amaro T, Blackbird S, de Stigter HC, Ferreira C, Glover A, Hilario A, Kiriakoulakis K, Neal L, Ravara A, Rodrigues CF, Tiago A, Billett DSM (2014) Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic). Deep Sea Res II 58(23–24):2433–2447Google Scholar
  23. De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (2014) Biogeographic Atlas of the Southern Ocean. SCAR, CambridgeGoogle Scholar
  24. Domack E, Ishman S, Leventer A, Sylva S, Willmott V, Huber B (2005) A chemotrophic ecosystem found beneath Antarctic ice shelf. EOS 86(269):271–272Google Scholar
  25. Dorschel B, Gutt J, Piepenburg D, Schröder M, Arndt JE (2014) The influence of the geomorphological and sedimentological settings on the distribution of epibenthic assemblages on a flat topped hill on the over-deepened shelf of the western Weddell Sea (Southern Ocean). Biogeosciences 11:3797–3817. doi: 10.5194/bg-11-3797-2014 CrossRefGoogle Scholar
  26. Dorschel B, Gutt J, Huhn O, Bracher A, Huntemann M, Huneke W, Schröder M (in review) Environmental parameters to characterise the benthic regions around the Antarctic Peninsula. Polar BiolGoogle Scholar
  27. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the west Antarctic Peninsula. Philos Trans R Soc B Biol Sci 362(1477):67–94CrossRefGoogle Scholar
  28. Duffy GA, Lundsten L, Kuhnz LA, Paull CK (2014) A comparison of megafaunal communities in five submarine canyons off Southern California, USA. Deep Sea Res II 104:259–266CrossRefGoogle Scholar
  29. Galéron J, Herman RL, Arnaud PM, Arntz WE, Hain S, Klages M (1992) Macrofaunal communities on the continental shelf and slope of the southeastern Wedell Sea, Antarctica. Polar Biol 12:283–290CrossRefGoogle Scholar
  30. Gerdes D, Klages M, Arntz WE, Herman RL, Galéron J, Hain S (1992) Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multibox corer samples. Polar Biol 12:291–301CrossRefGoogle Scholar
  31. Gili J-M, Arntz WE, Palanquesa A, Orejas C, Clarke A, Dayton PK, Isla E, Teixidó N, Rossi S, López-González PJ (2006) A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep Sea Res II 53:1029–1052CrossRefGoogle Scholar
  32. Göcke C, Janussen D (2013) Sponge assemblages of the deep Weddell Sea: ecological and zoogeographic results of ANDEEP I-III and SYSTCO I expeditions. Polar Biol 36:1059–1068CrossRefGoogle Scholar
  33. Gori A, Orejas C, Madurell T, Bramanti L, Martins M, Quintanilla E, Marti-Puig P, Lo Iacono C, Puig P, Requena S, Greenacre M, Gili JM (2013) Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10:2049–2060CrossRefGoogle Scholar
  34. Grange LJ, Smith CR (2013) Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity. PLoS ONE 8(11):1–17Google Scholar
  35. Grant S, Constable A, Raymond B, DoustS (2006) Bioregionalisation of the Southern Ocean: report of experts workshop, Hobart, September 2006 WWF-Australia and ACE CRCGoogle Scholar
  36. Griffiths HJ (2010) Antarctic marine biodiversity: what do we know about the distribution of life in the Southern Ocean? PLoS ONE 5(8):e11683. doi: 10.1371/journal.pone.0011683 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Griffiths HJ, Whittle RJ, Roberts SJ, Belchier M, Linse K (2013) Antarctic crabs: invasion or endurance? PLoS ONE 8(7):e66981. doi: 10.1371/journal.pone.0066981 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gutt J (2000) Some “driving forces” structuring communities of the sublittoral antarctic macrobenthos. Antarct Sci 12:297–313CrossRefGoogle Scholar
  39. Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarct Sci 19(2):165–182CrossRefGoogle Scholar
  40. Gutt J (2013) The expedition of the research vessel “Polarstern” to the Antarctic in 2013 (ANT-XXIX/3). Ber Polarforsch Meeresforsch 665:1–150Google Scholar
  41. Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Prog Ser 253:77–83CrossRefGoogle Scholar
  42. Gutt J, Barratt I, Domack E, d’Udekem d’Acoz C, Dimmler W, Grémare A, Heilmayer O, Isla E, Janussen D, Jorgensen E, Kock K-H, Lehnert LS, López-Gonzáles P, Langner S, Linse K, Manjón-Cabeza ME, Meißner M, Montiel A, Raes M, Robert H, Rose A, Sañé Schepisi E, Saucède T, Scheidat M, Schenke H-W, Seiler J, Smith C (2011) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Res II 58:74–83CrossRefGoogle Scholar
  43. Gutt J, Adams B, Bracegirdle T, Cowan D, Cummings V, di Prisco G, Gradinger R, Isla E, McIntyre T, Murphy E, Peck L, Schloss I, Smith C, Suckling C, Takahashi A, Verde C, Wall DH, Xavier J (2013a) Antarctic thresholds-ecosystem resilience and adaptation a new SCAR-biology programme. Polarforschung 82(2):147–150Google Scholar
  44. Gutt J, Griffiths HJ, Jones CD (2013b) Circum-polar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar Biodiv 43:481–487. doi: 10.1007/s12526-013-0152-9 CrossRefGoogle Scholar
  45. Gutt J, Cape M, Dimmler W, Fillinger L, Isla E, Lieb V, Lundälv T, Pulcher C (2013c) Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula. Polar Biol 36:895–906CrossRefGoogle Scholar
  46. Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J, Hosie G, Isla E, Schloss IR, Smith CR, Tournadre J, Xavier JC (2015) The Southern Ocean ecosystem under multiple climate stresses-an integrated circumpolar assessment. Glob Change Biol 21:1434–1453. doi: 10.1111/geb.12794 CrossRefGoogle Scholar
  47. Hellmer HH, Huhn O, Gomis D, Timmermann R (2011) On the freshening of the northwestern Weddell Sea continental shelf. Ocean Sci 7(3):305–316CrossRefGoogle Scholar
  48. Herr H, Viquerat S, Siegel V, Bracher A, Huneke W, Dorschel B, Kock K-H, Gutt J (in review) Model based humpback, Fin whale and krill distribution: results of a snapshot study from the West Antarctic Peninsula. Polar BiolGoogle Scholar
  49. Isla E, Masque P, Palanques A, Guillen J, Puig P, Sanchez-Cabeza JA (2004) Sedimentation of biogenic constituents during the last century in western Bransfield and Gerlache Straits, Antarctica: a relation to currents, primary production, and sea floor relief. Mar Geol 209(1–4):265–277CrossRefGoogle Scholar
  50. Isla E, Gerdes D, Palanques A, Teixidó N, Arntz W, Puig P (2006) Relationships between Antarctic coastal and deep-sea particle fluxes: implications for the deep-sea benthos. Polar Biol 29(4):249–256CrossRefGoogle Scholar
  51. Isla E, Gerdes D, Palanques A, Gili J-M, Arntz WE, König-Langlo G (2008) Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: a stormy impulse for the biological pump. Mar Geol 259(1–4):59–72Google Scholar
  52. Isla E (in press) Organic carbon and biogenic silica in marine sediments in the vicinities of the Antarctic Peninsula: variability across a climatic gradient. Polar BiolGoogle Scholar
  53. Janussen D, Tendal OS (2007) Diversity and distribution of Porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep Sea Res II 54:1864–1875CrossRefGoogle Scholar
  54. Jerosch K, Kuhn G, Krajnik I, Scharf FK, Dorschel B (2015) A geomorphological seabed classification for the Weddell Sea, Antarctica. Mar Geophys Res. doi: 10.1007/s11001-015-9256-x Google Scholar
  55. Jones DOB, Yool A, Wei C-L, Henson SA, Ruhl HA, Watson RA, Gehlen M (2014) Global reductions in seafloor biomass in response to climate change. Glob Change Biol 20(6):1861–1872CrossRefGoogle Scholar
  56. Kavanaugh MT, Abdala FN, Ducklow H, Glover D, Fraser W, Martinson D, Stammerjohn S, Schofield O, Doney SC (2015) Effect of continental shelf canyons on phytoplankton biomass and community composition along the western Antarctic Peninsula. Mar Ecol Prog Ser 524:11–26CrossRefGoogle Scholar
  57. Kennicutt MC II, Chown SL, Cassano JJ, Liggett D, Massom R, Peck LS, Massom R, Rintoul SR, Storey J, Vaughan DG, Wilson TJ, Allison I, Ayton J, Badhe R, Baeseman J, Barrett PJ, Bell RE, Bertler N, Bo S, Brandt A, Bromwich D, Cary SC, Clark MS, Convey P, Costa ES, Cowan D, DeConto R, Dunbar R, Elfring C, Escutia C, Francis J, Fricker HA, Fukuchi M, Gilbert N, Gutt J, Havermans C, Hik D, Hosie G, Jones C, Kim YD, Le Mahon Y, Lee SH, Leppe M, Leychenkov G, Li X, Lipenkov V, Lochte K, López-Martínez J, Lüdecke C, Lyons W, Marenssi S, Miller H, Morozova P, Naish T, Nayak S, Ravindra R, Retamales J, Ricci CA, Rogan-Finnemore M, Ropert-Coudert Y, Samah AA, Sanson L, Scambos T, Schloss IR, Shiraishi K, Siegert MJ, Simões JC, Storey B, Sparrow MD, Wall DH, Walsh JC, Wilson G, Winther JG, Xavier JC, Yang H, Sutherland WJ (2014) A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct Sci 27(1):3–18. doi: 10.1017/S0954102014000674 CrossRefGoogle Scholar
  58. Kersken D, Janussen D (in review) Biodiversity of sponge communities in the Bransfield Strait, Drake Passage and Weddell Sea, Antarctica. Polar BiolGoogle Scholar
  59. Larsen LH (1997) Soft-bottom macro invertebrate fauna of North Norwegian coastal waters with particular reference to sill-basins. Part one: bottom topography and species diversity. Hydrobiologia 355:101–113CrossRefGoogle Scholar
  60. Lockhart SJ, Jones CD (2008) Biogeographic patterns of benthic invertebrate megafauna on shelf areas within the Southern Ocean Atlantic sector. CCAMLR Sci 15:167–192Google Scholar
  61. Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, LondonCrossRefGoogle Scholar
  62. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604Google Scholar
  63. Mincks SL, Smith CR (2007) Recruitment patterns in Antarctic Peninsula shelf sediments: evidence of decoupling from seasonal phytodetritus pulses. Polar Biol 30:587–600. doi: 10.1007/s00300-006-0216-4 CrossRefGoogle Scholar
  64. Mincks SL, Smith CR, Jerffreys RM, Sumida PYG (2008) Trophic structure on the West Antarctic Peninsula shelf: detritivory and benthic inertia revealed by delta C-13 and delta N-15 analysis. Deep-Sea Res II 55(22–23):2502–2514. doi: 10.1016/j.dsr2.2008.06.009
  65. Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980CrossRefGoogle Scholar
  66. Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–1473CrossRefPubMedGoogle Scholar
  67. Moon H-W, Rauhan WM, Hussinc W, Kima H-C, Ahn I-Y (2015) The impacts of climate change on Antarctic nearshore mega-epifaunal benthic assemblages in a glacial fjord on King George Island: responses and implications. Ecol Indic 57:280–292CrossRefGoogle Scholar
  68. Moreau S, Mostajir B, Belanger S, Schloss IR, Vancoppenolle M, Demers S, Ferreyra GA (2015) Climate change enhances primary production in the western Antarctic Peninsula. Glob Change Biol 21(6):2191–2205CrossRefGoogle Scholar
  69. Oliver J, Hammerstrom K, McPhee-Shaw E, Slattery P, Oakden J, Kim S, Hartwell SI (2011) High species density patterns in macrofaunal invertebrate communities in the marine benthos. Mar Ecol 32(3):278–288CrossRefGoogle Scholar
  70. Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct Sci 17:497–507CrossRefGoogle Scholar
  71. Piepenburg D, Schmid MK, Gerdes D (2002) The benthos off King George Island (South Shetland Islands, Antarctica): further evidence for a lack of a latitudinal biomass cline in the Southern Ocean. Polar Biol 25(2):146–158CrossRefGoogle Scholar
  72. Post AL, O’Brien PE, Beaman RJ, Riddle MJ, De Santis L (2010a) Physical controls on deep water coral communities on the George V Land slope, East Antarctica. Antarct Sci 22(4):371–378CrossRefGoogle Scholar
  73. Post A, Beaman R, Riddle M (2010b) Shedding light on the sea floor. Aust Antarct Mag 18:13–14Google Scholar
  74. Saba GK, Fraser WR, Saba VS, Iannuzzi RA, Coleman KE, Doney SC, Ducklow HW, Martinson DG, Miles TN, Patterson-Fraser DL, Stammerjohn SE, Steinberg DK, Schofield OM (2014) Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat Commun. doi: 10.1038/ncomms5318 Google Scholar
  75. Sangrà P, García-Muñoz C, García CM, Marrero-Díaz Á, Sobrino C, Mouriño-Carballido B, Aguiar-González B, Henríquez-Pastene C, Rodríguez-Santana Á, Lubián LM, Hernández-Arencibia M, Hernández-León S, Vázquez E, Estrada-Allis SN (2014) Coupling between upper ocean layer variability and size-fractionated phytoplankton in a nonnutrient-limited environment. Mar Ecol Prog Ser 499:35–46. doi: 10.3354/meps10668 CrossRefGoogle Scholar
  76. Segelken-Voigt A, Bracher A, Dorschel B, Gutt J, Huneke W, Link H, Piepenburg D (in review) Spatial distribution patterns of ascidians (Ascidiacea: Tunicata) on the continental shelves off the northern Antarctic Peninsula. Polar BiolGoogle Scholar
  77. Shepherd A, Wingham D, Payne T, Skvarca P (2003) Larsen ice shelf has progressively thinned. Science 302(5646):856–859. doi: 10.1126/science.1089768 CrossRefPubMedGoogle Scholar
  78. Smith RC, Dierssen HM, Vernet M (1996) Phytoplankton biomass and productivity in the western Antarctic Peninsula region. In: Hofmann EE, Ross RM, Quetin LB (eds) Foundations for Ecological Research West of the Antarctic Peninsula. Antar Res S 70, American Geophysical Union, Washington, DC., pp 333–356. doi:  10.1029/AR070p0333
  79. Smith CR, Mincks S, DeMaster DJ (2006) A synthesis of bentho-pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep Sea Res II 53:875–894. doi: 10.1016/j.dsr2.2006.02.001 CrossRefGoogle Scholar
  80. Smith CR, Mincks S, DeMaster DJ (2008) The FOODBANCS project: introduction and sinking fluxes of organic carbon, chlorophyll-a and phytodetritus on the western Antarctic Peninsula continental shelf. Deep Sea Res II 55:2404–2414. doi: 10.1016/j.dsr2.2008.06.001 CrossRefGoogle Scholar
  81. Smith CR, Grange LJ, Honig DL, Naudts L, Huber B, Guidi L, Domack E (2012) A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts. P Royal Soc Lond B Bio 279:1017–1026. doi: 10.1098/rspb.2011.1496 CrossRefGoogle Scholar
  82. Spreen G, Kaleschke L, Heygster G (2008) Sea ice remote sensing using AMSR-E 89-GHz channels. J Geophys Res. doi: 10.1029/2005JC003384 Google Scholar
  83. Sumida PYG, Bernardino AF, Stedall VP, Glover AG, Smith CR (2008) Temporal changes in benthic megafaunal abundance and composition across the West Antarctic Peninsula shelf: results from video surveys. Deep Sea Res II 55:2465–2477. doi: 10.1016/j.dsr2.2008.06.006 CrossRefGoogle Scholar
  84. Teixidó N, Garrabou J, Gutt J, Arntz WE (2007) Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems 10:143–157CrossRefGoogle Scholar
  85. Torre L, Servetto N, Eöry ML, Momo F, Tatián M, Abele D, Sahade R (2012) Respiratory responses of three Antarctic ascidians and a sea pen to increased sediment concentrations. Polar Biol 35:1743–1748CrossRefGoogle Scholar
  86. Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci USA 108(18):7625–7628CrossRefPubMedPubMedCentralGoogle Scholar
  87. Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewsky P, Summerhayes C (2009) Antarctic climate change and the environment. SCAR, Scott Polar Research Institute, CambridgeGoogle Scholar
  88. Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson D, Jarvis M, Jenkins A, Marshall G, Meredith MP, Roscoe H, Shanklin J, French J, Goosse H, Gutt J, Jacobs S, Kennicutt MC II, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Summerhayes C, Speer K, Klepikov A (2014) Antarctic climate change and the environment: an update. Polar Rec 50:237–259CrossRefGoogle Scholar
  89. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Tuner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60(3):243–274CrossRefGoogle Scholar
  90. Weiss AD (2001) Topographic position and landforms analysis. Poster presentation, ESRI users conference, San Diego, CA. Accessed 13 Oct 2015
  91. Wienberg C, Wintersteller P, Beuck L, Hebbeln D (2013) Coral Patch seamount (NE Atlantic): a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys. Biogeosciences 10:3421–3443CrossRefGoogle Scholar
  92. Wilhm JL (1968) Use of biomass units in Shannon’s formula. Ecology 49:153–156CrossRefGoogle Scholar
  93. Wright DJ, Lundblad ER, Larkin EM, Rinehart RW, Murphy J, Cary-Kothera L, Draganov K (2005) ArcGIS Benthic Terrain Modeler [a collection of tools used with bathymetric data sets to examine the deepwater benthic environment], Oregon State University, Davey Jones’ Locker Seafloor Mapping/Marine GIS Laboratory and NOAA Coastal Services CenterGoogle Scholar
  94. Zhou M, Niiler PP, Zhu Y, Dorland RD (2006) The western boundary current in the Bransfield Strait, Antarctica. Deep Sea Res I 53(7):1244–1252CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. Gutt
    • 1
    Email author
  • M. C. Alvaro
    • 2
  • A. Barco
    • 3
  • A. Böhmer
    • 1
  • A. Bracher
    • 1
    • 4
  • B. David
    • 5
    • 6
  • C. De Ridder
    • 7
  • B. Dorschel
    • 1
  • M. Eléaume
    • 8
  • D. Janussen
    • 9
  • D. Kersken
    • 9
  • P. J. López-González
    • 10
  • I. Martínez-Baraldés
    • 10
  • M. Schröder
    • 1
  • A. Segelken-Voigt
    • 1
    • 11
  • N. Teixidó
    • 12
    • 13
  1. 1.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.Italian National Antarctic Museum (MNA), and Department of Earth, Environmental and Life Sciences (DISTAV)University of Genova (Italy)GenoaItaly
  3. 3.GEOMAR, Helmholtz Centre for Ocean ResearchKielGermany
  4. 4.Institute of Environmental PhysicsUniversity of BremenBremenGermany
  5. 5.Muséum national d’Histoire naturelleParisFrance
  6. 6.Biogéosciences, UMR CNRS 6282Université Bourgogne Franche-ComtéDijonFrance
  7. 7.Laboratoire de Biologie Marine (C.P. 160/15)Université Libre de BruxellesBrusselsBelgium
  8. 8.UMR 7205 CNRS MNHN UPMC EPHE, Muséum National d’Histoire Naturelle, Département Systématique et EvolutionISYEBParis Cedex 05France
  9. 9.Senckenberg Research Institute and Natural History MuseumFrankfurt Am MainGermany
  10. 10.Biodiversidad y Ecología de Invertebrados Marinos, Facultad de BiologíaUniversidad de SevillaSevilleSpain
  11. 11.Carl von Ossietzky University of OldenburgOldenburgGermany
  12. 12.Stazione Zoologica Anton DohrnNaplesItaly
  13. 13.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain

Personalised recommendations