Advertisement

Polar Biology

, Volume 39, Issue 2, pp 221–236 | Cite as

High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea

  • Glenn Yannic
  • Jonathan M. Yearsley
  • Roberto Sermier
  • Christophe Dufresnes
  • Olivier Gilg
  • Adrian Aebischer
  • Maria V. Gavrilo
  • Hallvard Strøm
  • Mark L. Mallory
  • R. I. Guy Morrison
  • H. Grant Gilchrist
  • Thomas Broquet
Original Paper

Abstract

Species may cope with rapid habitat changes by distribution shifts or adaptation to new conditions. A common feature of these responses is that they depend on how the process of dispersal connects populations, both demographically and genetically. We analyzed the genetic structure of a near-threatened high-Arctic seabird, the ivory gull (Pagophila eburnea) in order to infer the connectivity among gull colonies. We analyzed 343 individuals sampled from 16 localities across the circumpolar breeding range of ivory gulls, from northern Russia to the Canadian Arctic. To explore the roles of natal and breeding dispersal, we developed a population genetic model to relate dispersal behavior to the observed genetic structure of worldwide ivory gull populations. Our key finding is the striking genetic homogeneity of ivory gulls across their entire distribution range. The lack of population genetic structure found among colonies, in tandem with independent evidence of movement among colonies, suggests that ongoing effective dispersal is occurring across the Arctic Region. Our results contradict the dispersal patterns generally observed in seabirds where species movement capabilities are often not indicative of dispersal patterns. Model predictions show how natal and breeding dispersal may combine to shape the genetic homogeneity among ivory gull colonies separated by up to 2800 km. Although field data will be key to determine the role of dispersal for the demography of local colonies and refine the respective impacts of natal versus breeding dispersal, conservation planning needs to consider ivory gulls as a genetically homogeneous, Arctic-wide metapopulation effectively connected through dispersal.

Keywords

Natal dispersal Breeding dispersal Effective number of breeders Population genetic structure Overlapping generation model 

Notes

Acknowledgments

This work was supported by grants from foundation Ellis Elliot (Switzerland), Société vaudoise des Sciences naturelles (Switzerland) and Nos Oiseaux (Switzerland) to G.Y., by a foundation Agassiz (Switzerland) grant to T.B. and by the Nicolas Perrin’s research group, Department of Ecology and Evolution at University of Lausanne, Switzerland. Field work in Greenland was supported by the National Geographic Society, Prix Gore-Tex initiative, Foundation Avenir Finance, the Arctic Ocean Diversity Census of Marine Life Project, CNES, CLS and F. Paulsen. The ivory gull project was part of the work plan of the Joint Norwegian-Russian Commission on Environmental Protection, and fieldwork in Norway and Russia was funded by the Norwegian Ministry of Environment, the Norwegian Polar Institute, Arctic and Antarctic Research Institute and Russian IPY 2007/08 program. We are grateful to Emmanuelle Pouivé, Brigitte Sabard, Vladimir Sokolov and Oleg Prodan, Vorkuta helicopter crew commanded by Sergey Kiryushkin for logistical assistance, Russian colleagues Mikhail Ivanov, Andrey and Elena Volkov for participating in fieldwork. Constructive comments by Nigel G. Yoccoz and two anonymous referees improved the manuscript.

Supplementary material

300_2015_1775_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1046 kb)

References

  1. ACIA (2004) Impacts of a warming arctic: arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  2. Bell G, Gonzalez A (2011) Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332:1327–1330CrossRefPubMedGoogle Scholar
  3. BirdLife International (2012) Pagophila eburnea. In: IUCN 2013. IUCN red list of threatened species. Version 2013.2, http://www.iucnredlist.org. Accessed 23 Jan 2014
  4. Bourne EC, Bocedi G, Travis JMJ, Pakeman RJ, Brooker RW, Schiffers K (2014) Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change. Proc R Soc Lond Ser B: Biol Sci 281:20132795CrossRefGoogle Scholar
  5. Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216CrossRefGoogle Scholar
  6. Broquet T, Angelone S, Jaquiéry J, Joly P, Léna JP, Lengagne T, Plénet S, Luquet E, Perrin N (2010) Genetic bottlenecks driven by population disconnection. Conserv Biol 24:1596–1605CrossRefPubMedGoogle Scholar
  7. Canada Environment (2013) Recovery strategy for the ivory gull (Pagophila eburnea) in Canada. Recovery Planning, Environment Canada, Gatineau, QuebecGoogle Scholar
  8. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefPubMedGoogle Scholar
  9. Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA (2010) The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186:983–995PubMedCentralCrossRefPubMedGoogle Scholar
  10. Clobert J, Danchin E, Dhondt A, Nichols J (2001) Dispersal. Oxford University Press, New YorkGoogle Scholar
  11. COSEWIC (2006) COSEWIC Assessment on the Ivory Gull Pagophila eburnea in Canada Committee on the Status of Endangered Wildlife in Canada, Ottawa, ON, CanadaGoogle Scholar
  12. Crow JF, Aoki K (1984) Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci USA 81:6073–6077PubMedCentralCrossRefPubMedGoogle Scholar
  13. de Korte J, Volkov AE (1993) Large colony of ivory gulls Pagophila eburnea at Domashniy Island, Severnaya Zemlya. Sula 7:107–110Google Scholar
  14. Dugger KM, Ainley DG, Lyver POB, Barton K, Ballard G (2010) Survival differences and the effect of environmental instability on breeding dispersal in an Adelie penguin meta-population. Proc Natl Acad Sci USA 107:12375–12380PubMedCentralCrossRefPubMedGoogle Scholar
  15. Felsenstein J (1971) Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 168:581–597Google Scholar
  16. Friesen VL, Burg TM, McCoy KD (2007) Mechanisms of population differentiation in seabirds. Mol Ecol 16:1765–1785CrossRefPubMedGoogle Scholar
  17. Gaston AJ, Brewer D, Diamond AW, Woodsworth EJ, Collins BT (2008) Canadian atlas of bird banding. Volume 2, Seabirds, 1921–1995. Canadian Wildlife Service, Environment Canada, CanadaGoogle Scholar
  18. Gauthier G, Milot E, Weimerskirch H (2010) Small-scale dispersal and survival in a long-lived seabird, the wandering albatross. J Anim Ecol 79:879–887PubMedGoogle Scholar
  19. Gavrilo MV (2011) Ivory gull Pagophila eburnea (Phipps, 1774) in the Russian Arctic: breeding patterns of species within the current species range optimum. PhD, Saint-Petersburg State University, Saint-Petersburg, RussiaGoogle Scholar
  20. Genovart M, Thibault JC, Igual JM, Bauza-Ribot MD, Rabouam C, Bretagnolle V (2013) Population structure and dispersal patterns within and between Atlantic and Mediterranean populations of a large-range pelagic seabird. Plos One 8:e70711PubMedCentralCrossRefPubMedGoogle Scholar
  21. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178CrossRefPubMedGoogle Scholar
  22. Gilchrist HG, Mallory ML (2005) Declines in abundance and distribution of the ivory gull (Pagophila eburnea) in Arctic Canada. Biol Conserv 121:303–309CrossRefGoogle Scholar
  23. Gilchrist HG, Strøm H, Gavrilo MV, Mosbech A (2008) International ivory gull conservation strategy and action plan vol No. 18. Conservation of Arctic Flora and Fauna (CAFF) International Secretariat, Circumpolar Seabird Group (CBird), AkureyriGoogle Scholar
  24. Gilg O, Boertmann D, Merkel F, Aebischer A, Sabard B (2009) Status of the endangered ivory gull, Pagophila eburnea, in Greenland. Polar Biol 32:1275–1286CrossRefGoogle Scholar
  25. Gilg O, Strøm H, Aebischer A, Gavrilo MV, Volkov A, Miljeteig C, Sabard B (2010) Post-breeding movements of the northeast Atlantic ivory gull Pagophila eburnea populations. J Avian Biol 41:532–542CrossRefGoogle Scholar
  26. Gilg O, Aars J, Fort J, Gauthier G, Gremillet D, Ims RA, Kovacs KM, Meltofte H, Moreau J, Post E, Schmidt NM, Yannic G, Bollache L (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann NY Acad Sci 1249:166–190CrossRefPubMedGoogle Scholar
  27. Goudet J (2005) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3). University of Lausanne, Lausanne. http://www.unil.ch/dee/page6767_en.html
  28. Goudet J, Raymond M, deMeeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940PubMedCentralPubMedGoogle Scholar
  29. Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21CrossRefGoogle Scholar
  30. Hill WG (1972) Effective size of populations with overlapping generations. Theor Popul Biol 3:278–289CrossRefPubMedGoogle Scholar
  31. Hoenig JM, Heisey DM (2001) The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat 55:19–24CrossRefGoogle Scholar
  32. Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CrossRefPubMedGoogle Scholar
  33. IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the Fourth Assessment Report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  34. Jones O, Wang J (2009) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555CrossRefPubMedGoogle Scholar
  35. Kimura M (1969) Number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61:893–903PubMedCentralPubMedGoogle Scholar
  36. Kimura M, Crow J (1963) The measurement of effective population number. Evolution 17:279–288CrossRefGoogle Scholar
  37. Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437CrossRefGoogle Scholar
  38. Laporte V, Charlesworth B (2002) Effective population size and population subdivision in demographically structured populations. Genetics 162:501–519PubMedCentralPubMedGoogle Scholar
  39. Lawrence H, Lyver P, Gleeson D (2014) Genetic panmixia in New Zealand grey-faced petrel: implications for conservation and restoration. Emu 114:249–258CrossRefGoogle Scholar
  40. Leblois R, Estoup A, Streiff R (2006) Genetics of recent habitat contraction and reduction in population size: does isolation by distance matter? Mol Ecol 15:3601–3615CrossRefPubMedGoogle Scholar
  41. Lebreton JD, Hines JE, Pradel R, Nichols JD, Spendelow JA (2003) Estimation by capture–recapture of recruitment and dispersal over several sites. Oikos 101:253–264CrossRefGoogle Scholar
  42. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055CrossRefPubMedGoogle Scholar
  43. Lorenzen ED, Nogues-Bravo D, Orlando L, Weinstock J, Binladen J, Marske KA, Ugan A, Borregaard MK, Gilbert MTP, Nielsen R, Ho SYW, Goebel T, Graf KE, Byers D, Stenderup JT, Rasmussen M, Campos PF, Leonard JA, Koepfli KP, Froese D, Zazula G, Stafford TW, Aaris-Sorensen K, Batra P, Haywood AM, Singarayer JS, Valdes PJ, Boeskorov G, Burns JA, Davydov SP, Haile J, Jenkins DL, Kosintsev P, Kuznetsova T, Lai XL, Martin LD, McDonald HG, Mol D, Meldgaard M, Munch K, Stephan E, Sablin M, Sommer RS, Sipko T, Scott E, Suchard MA, Tikhonov A, Willerslev R, Wayne RK, Cooper A, Hofreiter M, Sher A, Shapiro B, Rahbek C, Willerslev E (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479:359–364PubMedCentralCrossRefPubMedGoogle Scholar
  44. Lyngs P (2003) Migration and winter ranges of birds in Greenland: an analysis of ringing recoveries. Dansk Ornitologisk Forenings Tidsskrift 97:1–167Google Scholar
  45. MacDonald SD (1976) Phantoms of the polar pack-ice. Audubon 78:2–19Google Scholar
  46. Mallory ML, Stenhouse IJ, Gilchrist HG, Robertson G, Haney JC, Macdonald SD (2008) Ivory gull (Pagophila eburnea). In: Poole A (ed) The Birds of North America Online. Ithaca: Cornell Laboratory of Ornithology; Retrieved from The Birds of North America Online: http://bna.birds.cornell.edu/BNA/species/175/. doi: 10.2173/bna.175
  47. Mallory ML, Allard KA, Braune BM, Gilchrist HG, Thomas VG (2012) New longevity record for ivory gulls (Pagophila eburnea) and evidence of natal philopatry. Arctic 65:98–101CrossRefGoogle Scholar
  48. Milot E, Weimerskirch H, Bernatchez L (2008) The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol Ecol 17:1658–1673CrossRefPubMedGoogle Scholar
  49. Nisbet ICT, Cam E (2002) Test for age-specificity in survival of the common tern. J Appl Stat 29:65–83CrossRefGoogle Scholar
  50. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  51. Penteriani V, Ferrer M, Delgado MM (2011) Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations. Anim Conserv 14:233–241CrossRefGoogle Scholar
  52. Rousset F (2001) Genetic approaches to the estimation of dispersal rates. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, New YorkGoogle Scholar
  53. Rousset F (2004) Genetic structure and selection in subdivided populations. Monographs in population biology. Princeton University Press, PrincetonGoogle Scholar
  54. Royston S, Carr S (2014) Conservation genetics of high-arctic Gull species at risk: I. Diversity in the mtDNA control region of circumpolar populations of the Endangered Ivory Gull (Pagophila eburnea). Mitochondrial DNA 26:1–4CrossRefGoogle Scholar
  55. Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602CrossRefGoogle Scholar
  56. Slatkin M (1991) Inbreeding coefficients and coalescence times. Genet Res 58:167–175CrossRefPubMedGoogle Scholar
  57. Spencer NC, Gilchrist HG, Mallory ML (2014) Annual movement patterns of endangered ivory gulls: the importance of sea ice. PLoS ONE 9:e115231PubMedCentralCrossRefPubMedGoogle Scholar
  58. Stenhouse IJ, Robertson GJ, Gilchrist HG (2004) Recoveries and survival rates of ivory gulls (Pagophila eburnea) banded in Nunavut, Canada, 1971–1999. Waterbirds 27:486–492CrossRefGoogle Scholar
  59. Stewart JR, Dalen L (2008) Is the glacial refugium concept relevant for northern species? A comment on Pruett and Winker 2005. Clim Change 86:19–22CrossRefGoogle Scholar
  60. Stewart JR, Lister A (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613CrossRefGoogle Scholar
  61. Travis JMJ, Delgado M, Bocedi G, Baguette M, Barton K, Bonte D, Boulangeat I, Hodgson JA, Kubisch A, Penteriani V, Saastamoinen M, Stevens VM, Bullock JM (2013) Dispersal and species’ responses to climate change. Oikos 122:1532–1540CrossRefGoogle Scholar
  62. Votier SC, Birkhead TR, Oro D, Trinder M, Grantham MJ, Clark JA, McCleery RH, Hatchwell BJ (2008) Recruitment and survival of immature seabirds in relation to oil spills and climate variability. J Anim Ecol 77:974–983CrossRefPubMedGoogle Scholar
  63. Wakeley J (2009) Coalescent theory. Roberts and Company Publishers, Greenwood Village, ColoradoGoogle Scholar
  64. Wang J (2012) Computationally efficient sibship and parentage assignment from multilocus marker data. Genetics 191:183–194PubMedCentralCrossRefPubMedGoogle Scholar
  65. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450CrossRefGoogle Scholar
  66. Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439CrossRefPubMedGoogle Scholar
  67. Waples RS, Teel DJ (1990) Conservation genetics of Pacific salmon. I. Temporal changes in allele frequency. Conserv Biol 4:144–156CrossRefGoogle Scholar
  68. Weatherhead P, Forbes MRL (1994) Natal philopatry in birds: genetic or ecological influences? Behav Ecol 5:426–433CrossRefGoogle Scholar
  69. Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  70. Welch AJ, Fleischer RC, James HF, Wiley AE, Ostrom PH, Adams J, Duvall F, Holmes N, Hu D, Penniman J, Swindle KA (2012) Population divergence and gene flow in an endangered and highly mobile seabird. Heredity 109:19–28PubMedCentralCrossRefPubMedGoogle Scholar
  71. Westneat DF, Stewart IRK (2003) Extra-pair paternity in birds: causes, correlates, and conflict. Annu Rev Ecol Evol Syst 34:365–396CrossRefGoogle Scholar
  72. Wojczulanis-Jakubas K, Kilikowska A, Harding AMA, Jakubas D, Karnovsky NJ, Steen H, Strom H, Welcker J, Gavrilo M, Lifjeld JT, Johnsen A (2014) Weak population genetic differentiation in the most numerous Arctic seabird, the little auk. Polar Biol 37:621–630CrossRefGoogle Scholar
  73. Wright S (1931) Evolution in mendelian populations. Genetics 16:97–159PubMedCentralPubMedGoogle Scholar
  74. Yannic G, Sermier R, Aebischer A, Gavrilo MV, Gilg O, Miljeteig C, Sabard B, Strom H, Pouive E, Broquet T (2011) Description of microsatellite markers and genotyping performances using feathers and buccal swabs for the ivory gull (Pagophila eburnea). Mol Ecol Resour 11:877–889CrossRefPubMedGoogle Scholar
  75. Yannic G, Aebischer A, Sabard B, Gilg O (2014a) Complete breeding failures in ivory gull following unusual rainy storms in North Greenland. Polar Res 33:22749CrossRefGoogle Scholar
  76. Yannic G, Pellissier L, Ortego J, Lecomte N, Couturier S, Cuyler C, Dussault C, Hundermark KJ, Irvine RJ, Jenkins DA, Kolpashikov L, Mager K, Musiani M, Parker KL, Røed KH, Sipko T, Þórisson SG, Weckworth BV, Guisan A, Bernatchez L, Côté SD (2014b) Genetic diversity in caribou linked to past and future climate change. Nat Clim Change 4:132–137CrossRefGoogle Scholar
  77. Yearsley J, Viard F, Broquet T (2013) The effect of collective dispersal on the genetic structure of a subdivided population. Evolution 67:1649–1659CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Glenn Yannic
    • 1
    • 2
    • 3
    • 16
  • Jonathan M. Yearsley
    • 4
  • Roberto Sermier
    • 5
  • Christophe Dufresnes
    • 5
  • Olivier Gilg
    • 3
    • 6
  • Adrian Aebischer
    • 3
    • 7
  • Maria V. Gavrilo
    • 8
    • 9
  • Hallvard Strøm
    • 10
  • Mark L. Mallory
    • 11
  • R. I. Guy Morrison
    • 12
  • H. Grant Gilchrist
    • 13
  • Thomas Broquet
    • 14
    • 15
  1. 1.Département de BiologieUniversité LavalQuebecCanada
  2. 2.Canada Research Chair in Polar and Boreal Ecology, Department of BiologyUniversité de MonctonMonctonCanada
  3. 3.Groupe de Recherche en Ecologie Arctique (GREA)FranchevilleFrance
  4. 4.School of Biology and Environmental ScienceUniversity College DublinBelfield, DublinIreland
  5. 5.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
  6. 6.Laboratoire Biogéosciences, UMR CNRS 5561, Equipe Ecologie EvolutiveUniversité de BourgogneDijonFrance
  7. 7.Museum of Natural HistoryFribourgSwitzerland
  8. 8.National Park Russian ArcticArchangelskRussia
  9. 9.Joint Directorate of Taimyr Nature ReservesNorilskRussia
  10. 10.Norwegian Polar Institute, Fram CentreTromsøNorway
  11. 11.Department of BiologyAcadia UniversityWolfvilleCanada
  12. 12.Environment CanadaNational Wildlife Research CentreOttawaCanada
  13. 13.Environment Canada, National Wildlife Research Centre and Department of BiologyCarleton UniversityOttawaCanada
  14. 14.CNRS, Team Diversity and Connectivity of Coastal Marine LandscapesRoscoffFrance
  15. 15.UMR 7144Sorbonne Universités, UPMC Univ Paris 06RoscoffFrance
  16. 16.LECA - Laboratoire d’Ecologie Alpine - CNRS UMR 5553Université Savoie Mont BlancLe Bourget-Du-Lac CedexFrance

Personalised recommendations