Polar Biology

, Volume 38, Issue 11, pp 1825–1845 | Cite as

Flora and vegetation of Cape Hallett and vicinity, northern Victoria Land, Antarctica

  • T. G. Allan Green
  • Rod D. Seppelt
  • Lars R. Brabyn
  • Catherine Beard
  • Roman Türk
  • Otto L. Lange
Original Paper


Cape Hallett (72°19′S; 170°13′E) lies at the northern end of the western coastline of the Ross Sea region, and, to date, there appears to be no full description of its terrestrial flora despite its probable importance in understanding links between biodiversity and latitude. Here we present information about lichens and mosses from published papers, herbarium collections and personal surveys for Cape Hallett and seven nearby sites. A total of 59 lichen and 11 moss species are reported for these eight sites. Cape Hallett is one of the richest sites for terrestrial biodiversity in the Ross Sea region with about 46 lichen species and nine species of bryophytes. Lichens have their greatest diversity on the upper scree and summit area (30 species, 330 m), the least within the large penguin colony at sea level (one species). The station at Cape Hallett was established in 1957, and some of the earliest ecological and ecophysiological studies in Antarctica were carried out there. Historical comparisons are possible and have revealed considerable changes in vegetation in the lower flush area, a high level of frost heave disturbance, new lichen growth rate estimates for northern Victoria Land and extreme stability of the snow banks on the scree slopes. Cape Hallett represents a very important site for studies on links between terrestrial flora and the environment as well as on possible effects of climate change.


Lichens Mosses Stability Lichen growth rate Cryoturbation Disturbance Nitrogen Crater Cirque Football Saddle 


  1. Ahmadjian V (1958) Antarctic lichen algae. Carol Tips 11:17–18Google Scholar
  2. Ahmadjian V (1970) Adaptations of Antarctic terrestrial plants. In: Holdgate MW (ed) Antarctic ecology 2. Academic Press, London, pp 801–811Google Scholar
  3. Ahmadjian V, Gannutz TP, Frishman S (1967) Photosynthesis and respiration of Antarctic lichens. Antarct J US 2:100–101Google Scholar
  4. Arup U, Søchting U, Frödén P (2013) A new taxonomy of the family Teloschistaceae. Nord J Bot 31:016–083CrossRefGoogle Scholar
  5. Brabyn L, Green TGA, Beard C, Seppelt RD (2005) GIS goes nano: vegetation studies in Victoria Land, Antarctica. NZ Geogr 61:139–147CrossRefGoogle Scholar
  6. Brabyn L, Beard C, Seppelt RD, Rudolph ED, Türk R, Green TGA (2006) Quantified vegetation change over 42 years at Cape Hallett, East Antarctica. Antarct Sci 18:561–572CrossRefGoogle Scholar
  7. Campbell DI, MacCullach RJL, Campbell IB (1997) Thermal regimes of some soils in the McMurdo region, Antarctica. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Proceedings of an international workshop on polar ecosystems, Christchurch, New Zealand, 1–4 July, 1996, A A Balkema, Rotterdam, pp 45–55Google Scholar
  8. Cannone N, Guglielmin M (2010) Relationships between periglacial features and vegetation development in Victoria Land, continental Antarctica. Antarct Sci 22:703–713CrossRefGoogle Scholar
  9. Cannone N, Seppelt RD (2008) A preliminary floristic classification of southern and northern Victoria Land vegetation, continental Antarctica. Antarct Sci 20:553–562CrossRefGoogle Scholar
  10. Cannone N, Convey P, Guglielmin M (2013) Diversity trends of bryophytes in continental Antarctica. Polar Biol 36:259–271CrossRefGoogle Scholar
  11. Castello M (2003) Lichens of the Terra Nova Bay area, northern Victoria Land. Stud Geobot 22:30–59Google Scholar
  12. Castello M (2010) Notes on the lichen genus Rhizoplaca from continental Antarctica and on some other species from northern Victoria Land. Lichenologist 42:429–437CrossRefGoogle Scholar
  13. Castello M, Nimis PL (1994) Critical notes on Antarctic yellow Acarosporaceae. Lichenologist 26:283–294CrossRefGoogle Scholar
  14. Castello M, Nimis PL (1995a) A critical revision of Antarctic lichens described by C.W. Dodge. Bibl Lichenol 57:71–92Google Scholar
  15. Castello M, Nimis PL (1995b) The lichen vegetation of Terra Nova Bay (Victoria Land, continental Antarctica). Bibl Lichen 58:43–55Google Scholar
  16. Colesie C, Green TGA, Haferkamp I, Büdel B (2014) Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8:2104–2115PubMedCentralCrossRefPubMedGoogle Scholar
  17. Crittenden PD, Scrimgeour G, Minnullina G, Sutton MA, Tang YS, Theobald MR (2015) Lichen response to ammonia deposition defines the footprint of a penguin rookery. Biogeochem 122:295–311CrossRefGoogle Scholar
  18. Dodge CW (1973) Lichen flora of the Antarctic continent and adjacent islands. Phoenix Publishing, CanaanGoogle Scholar
  19. Edwards HGM, Moody CA, Villar SEJ, Dickensheets DL, Wynn-Williams DD (2004) Antarctic analogues for Mars exploration: a Raman spectroscopic study of biogeological signatures. In: Third European workshop on exo-astrobiology, pp 33–36Google Scholar
  20. Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. PNAS 111:5634–5639PubMedCentralCrossRefPubMedGoogle Scholar
  21. Gannutz TP (1968) Effects of environmental extremes on lichens. Bull Soc Bot Fr 115(Suppl 2):169–179CrossRefGoogle Scholar
  22. Gannutz TP (1971) Ecodynamics of lichen communities in Antarctica. In: Quam LO (ed) Research in the Antarctic. Am Assoc Adv Sci Pub, No. 93, Washington, pp 213–226Google Scholar
  23. Gordon S (2003) Site description and literature review of Cape Hallett and surrounding areas. Antarctica New Zealand, Latitude Gradient Project, Internal report, pp 1–16Google Scholar
  24. Green TGA, Sancho LG, Pintado A, Schroeter B (2011a) Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol 34:1643–1656CrossRefGoogle Scholar
  25. Green TGA, Sancho L, Tuerk R, Seppelt RD, Hogg ID (2011b) High diversity of lichens at 84°S suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biol 34:1211–1220CrossRefGoogle Scholar
  26. Guthridge GG (1983) Hallett station, Antarctica, 1956–1973. Antarct J US 18:1–8Google Scholar
  27. Harrington HJ, Wood BL, McKellar IC, Lensen GJ (1967) The geology of Cape Hallett—Tucker Glacier district, Antarctica NZ Geol Survey Bulletin 80Google Scholar
  28. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Monographs on statistics. Chapman & Hall/CRCGoogle Scholar
  29. Herbert DA, Rastetter EB, Gough L, Shaver GR (2004) Species diversity across nutrient gradients: an analysis of resource competition in model ecosystems. Ecosystems 7:296–310CrossRefGoogle Scholar
  30. Hertel H (2007) Notes on and records of Southern Hemisphere lecideoid lichens. Bibl Lichen 95:267–296Google Scholar
  31. Hill M, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  32. Hills SFK, Stevens M, Gemmill CEC (2010) Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum. Antarct Sci 22:721–726CrossRefGoogle Scholar
  33. Hofstee EH, Balks MR, Petchey F, Campbell DI (2006) Soils of Seabee Hook, Cape Hallett, northern Victoria Land, Antarctica. Antarct Sci 18:473–486CrossRefGoogle Scholar
  34. Howard-Williams C, Peterson D, Lyons WB, Cattoneo-Vietti R, Gordon S (2006) Measuring ecosystem response in a rapidly changing environment: the Latitudinal Gradient Project. Antarct Sci 18:465–471CrossRefGoogle Scholar
  35. Howard-Williams C, Hawes I, Gordon S (2010) The environmental basis of ecosystem variability in Antarctica: research in the Latitudinal Gradient Project. Antarct Sci 22:591–602CrossRefGoogle Scholar
  36. Kappen L (1985a) Vegetation and ecology of ice-free areas of northern Victoria Land, Antarctica. I. The lichen vegetation of Birthday Ridge and an inland mountain. Polar Biol 4:213–225Google Scholar
  37. Kappen L (1985b) Vegetation and ecology of ice-free areas of northern Victoria Land, Antarctica. II: ecological conditions in typical microhabitats of lichens at Birthday Ridge. Polar Biol 4:227–236CrossRefGoogle Scholar
  38. Kappen L, Lange OL (1970) Kälteresistenz von Flechten aus verschiedenen Klimagebieten. Vorträge aus dem Gesamtgeb. d. Botanik (Deutsche Bot. Ges.), N.F. 4:61–65 (Cold resistance of lichens from different climatic areas)Google Scholar
  39. Kappen L, Lange OL (1972) Die Kälteresistenz einiger Makrolichenen. Flora 161:1–29 (Cold resistance of some macro lichens)Google Scholar
  40. Kappen L, Schroeter B, Green TGA, Seppelt RD (1998) Microclimatic conditions, meltwater moistening, and the distributional pattern of Buellia frigida on rock in a southern continental Antarctic habitat. Polar Biol 19:101–106CrossRefGoogle Scholar
  41. Lange OL (1965) Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen. Planta 64:1–19 (CO 2 exchange of lichens at low temperatures) Google Scholar
  42. Lange OL (1969) Die funktionellen Anpassungen der Flechten an die ökologischen Bedingungen arider Gebiete. Ber dtsch Bot Ges 82:3–22 (Functional adaptation of lichens to the ecological conditions of arid areas) Google Scholar
  43. Lange OL (1972) Flechten—Pionierpflanzen in Kältewüsten. Umschau 72:650–654 (Lichens - pioneer plants in cold deserts) Google Scholar
  44. Lange OL, Kappen L (1972) Photosynthesis of lichens from Antarctica. In: Llano GA (ed) Antarctic terrestrial biology, Am Geophys Union, Antarct Res Ser 20:83–95Google Scholar
  45. Lindblom L, Søchting U (2008) Taxonomic revision of Xanthomendoza borealis and Xanthoria mawsonii (Lecanoromycetes, Ascomycota). Lichenologist 40:399–409CrossRefGoogle Scholar
  46. Longton RE (1988) Biology of polar bryophytes and lichens. Cambridge University Press, Cambridge, p 400Google Scholar
  47. McIntosh WC, Kyle PR (1990) Hallett volcanic province. In: LeMasurier WE, Thompson JW (eds) Volcanoes of the Antarctic plate and southern oceans, Am Geophys Union, Antarct Res Ser, vol 48, pp 9–47Google Scholar
  48. Murray J (1963) Lichens from Cape Hallett area, Antarctica. Bot Trans Roy Soc NZ 2:59–72Google Scholar
  49. Ochyra R, Smith RIL, Bednarek-Ochyra H (2005) The illustrated moss flora of Antarctica. Cambridge University Press, CambridgeGoogle Scholar
  50. Oksanen J (2004) Vegan: R functions for vegetation ecologists. Version: vegan_1.64, released on June 10, 2004. http://cc.oulu.fi/jarioksa/softhelp/vegan.htm
  51. Oksanen J, Minchin PR (1997) Instability of ordination results under changes in input data order: explanation and remedies. J Veg Sci 8:447–454CrossRefGoogle Scholar
  52. Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, CambridgeGoogle Scholar
  53. Pannewitz S, Green TGA, Scheidegger C, Schlensog M, Schroeter B (2003) Activity pattern of the moss Hennediella heimii (Hedw.) Zand., in the Dry Valleys, Southern Victoria Land, Antarctica, during the mid-austral summer. Polar Biol 26:454–551CrossRefGoogle Scholar
  54. Peat H, Clarke A, Convey P (2007) Diversity and biogeography of the Antarctic flora. J Biogeog 34:132–146CrossRefGoogle Scholar
  55. Perez-Ortega S, Ortiz-Álvarez R, Green TGA, de los Rios A (2012) Lichen myco-and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol 82:429–448CrossRefPubMedGoogle Scholar
  56. Pisa S, Biersma EM, Convey P, Patiño J, Vanderpoorten AV, Werner O, Ros RM (2014) The cosmopolitan moss Bryum argenteum in Antarctica: recent colonisation or in situ survival? Polar Biol 37:1469–1477CrossRefGoogle Scholar
  57. Pryor ME (1962) Some environmental features of Hallett Station, Antarctica, with special reference to Arthropods. Pac Insects 4:681–728Google Scholar
  58. Reid BE (1964) Cape Hallett Adélie penguin rookery—its size, composition, and structure. Rec Dom Mus 5:11–37Google Scholar
  59. Rudolph ED (1963) Vegetation of Hallett station area. Ecology 44:585–586CrossRefGoogle Scholar
  60. Rudolph ED (1966a) Terrestrial vegetation of Antarctica: past and present studies. In: Tedrow JCF (ed) Antarctic soils and soil forming processes. Am Geophys Union Antarct Res Ser, vol 8, pp 109–124Google Scholar
  61. Rudolph ED (1966b) Lichen ecology and microclimate studies at Cape Hallett, Antarctica. In: Thomp SW, Weihe WH (eds) Proceedings of the third biometeorological congress, Pau, France, 1963, 2:900–910Google Scholar
  62. Ryan KG, Burne A, Seppelt RD (2009) Historical ozone concentrations and flavonoid levels in herbarium specimens of the Antarctic moss Bryum argenteum. Global Change Biol 15:1694–1702CrossRefGoogle Scholar
  63. Sancho LG, Green TGA, Pintado A (2007) Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora 202:667–673CrossRefGoogle Scholar
  64. Sancho LG, Palacios D, Green TGA, Vivas M, Pintado A (2011) Extreme high lichen growth rates detected in recently deglaciated areas in Tierra del Fuego. Polar Biol 34:813–822CrossRefGoogle Scholar
  65. Schofield E, Ahmadjian V (1973) Field observations and laboratory studies of some Antarctic cold desert cryptogams. In: Llano GA (ed) Antarctic terrestrial biology, Am Geophys Union, Antarct Res Ser, vol 20, pp 97–142Google Scholar
  66. Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2010) Fourteen degrees of latitude and a continent apart: comparison of lichen activity over two years at continental and maritime Antarctic sites. Antarct Sci 22:681–690CrossRefGoogle Scholar
  67. Schwarz A-MJ, Green TGA, Seppelt RD (1992) Terrestrial vegetation at Canada Glacier, Southern Victoria land, Antarctica. Polar Biol 12:397–404CrossRefGoogle Scholar
  68. Seppelt RD, Green TGA, Schroeter B (1995) Lichens and mosses from the Kar Plateau, Southern Victoria Land, Antarctica. NZ J Bot 33:203–220CrossRefGoogle Scholar
  69. Seppelt RD, Nimis PL, Castello M (1998) The Genus Sarcogyne (Acarosporaceae) in Antarctica. Lichenologist 30:249–258CrossRefGoogle Scholar
  70. Seppelt RD, Green TGA, Skotnicki M (1999) Notes on the Flora, Vertebrate Fauna and Biological Significance of Beaufort Island, Ross Sea, Antarctica. Polarforsch 66:53–59Google Scholar
  71. Seppelt RD, Türk R, Green TGA, Moser G, Pannewitz S, Sancho LG, Schroeter B (2010) Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarct Sci 22:691–702CrossRefGoogle Scholar
  72. Smykla J, Krzewicka B, Wilk K, Emslie S, Śliwa L (2011) Additions to the lichen flora of Victoria land, Antarctica. Pol Polar Res 32:123–138Google Scholar
  73. Søchting U, Castello M (2012) The polar lichens Caloplaca darbishirei and C. soropelta highlight the direction of bipolar migration. Polar Biol 35:1143–1149CrossRefGoogle Scholar
  74. Søchting U, Olech M (1995) The lichen genus Caloplaca in polar regions. Lichenologist 27:463–471CrossRefGoogle Scholar
  75. Søchting U, Seppelt RD (2003) Caloplaca coeruleofrigida sp. nova, a species from continental Antarctica. Mycotaxon 86:163–168Google Scholar
  76. Stevens M, Greenslade P, Hogg ID, Sunnucks P (2006) Southern Hemisphere Springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882CrossRefPubMedGoogle Scholar
  77. Theobald MR, Crittenden PD, Sim Tang Y, Sutton MA (2013) The application of inverse-dispersion and gradient methods to estimate ammonia emissions from a penguin colony. Atmos Environ 81:320–329CrossRefGoogle Scholar
  78. Torricelli G, Frati F, Convey P, Telford M, Carapelli A (2010) Population structure of Friesea grisea (Collembola, Neanuridae) in the Antarctic Peninsula and Victoria Land: evidence for local genetic differentiation of pre-Pleistocene origin. Antarct Sci 22:757–765CrossRefGoogle Scholar
  79. Yee TW, MacKenzie M (2002) Vector generalized additive models in plant ecology. Ecol Model 157:141–156CrossRefGoogle Scholar
  80. Yee TW, Wild CJ (1996) Vector generalized additive models. J R Stat Soc B 58:481–493Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • T. G. Allan Green
    • 1
    • 2
  • Rod D. Seppelt
    • 3
    • 8
  • Lars R. Brabyn
    • 4
  • Catherine Beard
    • 5
  • Roman Türk
    • 6
  • Otto L. Lange
    • 7
  1. 1.Departamento de Vegetal II, Farmacia FacultadUniversidad ComplutenseMadridSpain
  2. 2.Biological SciencesUniversity of WaikatoHamiltonNew Zealand
  3. 3.Australian Antarctic DivisionKingstonAustralia
  4. 4.Department of GeographyUniversity of WaikatoHamiltonNew Zealand
  5. 5.Department of Conservation - Te Papa AtawhaiHamiltonNew Zealand
  6. 6.Fachbereich Organismische Biologie, Arbeitsgruppe Ökologie und Diversität der PflanzenUniversität SalzburgSalzburgAustria
  7. 7.Julius-von-Sachs-Institut für BiowissenschaftenUniversität WürzburgWürzburgGermany
  8. 8.Tasmanian HerbariumSandy BayAustralia

Personalised recommendations