Polar Biology

, Volume 38, Issue 10, pp 1613–1622 | Cite as

Spatial variation in the diet of Patagonotothen tessellata (Pisces, Nototheniidae) from the fjords and channels of southern Chilean Patagonia

  • Mathias HüneEmail author
  • Rodrigo Vega
Original Paper


The black southern cod, Patagonotothen tessellata, is the most important notothenioid fish species in terms of abundance in southern Chilean Patagonia. However, studies on its trophic ecology are scarce. Here we assessed the spatial variation in the diet of P. tessellata between two localities, one with oceanic influence (Staples Strait) and another with continental influence (Puerto Bories). We used permutation analysis combined with non-metric multi-dimensional scaling to evaluate spatial differences in diet. In addition, generalized additive models were used to identify the most significant environmental, biological and spatial predictors of variability in diet. The black southern cod presents spatial differences in diet composition among contrasting environmental localities. The diet in Staples Strait was characterized by the dominance of the polychaete Platynereis australis, whereas diet in Puerto Bories was characterized by crustaceans, mainly ostracods, gammarids and algae, mainly the filamentous green alga Rhizoclonium sp. and the red algae Polysiphonia sp. Diet composition did not show significant difference between sexes, whereas diet of small, medium and large fish differed to some degree. Smaller-sized P. tessellata were most likely to contain food. Salinity and temperature had significant influence on diet variability, suggesting that P. tessellata showed a greater diversity of prey items in environmental conditions with greater temperature and lower salinity. The results provide evidence of two dietary patterns depending on the type of environment in which they are distributed, highlighting the potential role of the environmental variables on the availability and abundance of potential prey and in structuring diet.


Patagonotothen Feeding habits Southern Patagonia ice fields Magellan region 



The authors would like to express their gratitude to Gladys Rivera, José Sánchez and Pedro Contreras for the onsite and logistic support.

Supplementary material

300_2015_1726_MOESM1_ESM.pdf (105 kb)
Supplementary material 1 (PDF 105 kb)


  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  2. Andrade S (1991) Geomorfología costera y antecedentes oceanográficos físicos de la región de Magallanes, Chile (48°–56°S). An Inst Pat Ser Cienc Nat 20(1):135–151Google Scholar
  3. Antezana T (1999) Hydrographic features of Magellan and Fuegian inland passages and adjacent Subantarctic waters. Sci Mar 63(Suppl. 1):23–34Google Scholar
  4. Barrera-Oro E, Casaux R (1990) Feeding selectivity in Notothenia neglecta, Nybelin, from Potter Cove, South Shetland Islands, Antarctica. Antarct Sci 2:207–213CrossRefGoogle Scholar
  5. Birt V, Birt T, Goulet D, Lairus D, Montevecchi W (1987) Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar Ecol Prog Ser 40:205–208CrossRefGoogle Scholar
  6. Burchett MS, Sayers PJ, North AW, White MG (1983) Some biological aspects of the near-shore fish populations at South Georgia. Br Antarct Surv Bull 59:63–74Google Scholar
  7. Cañete J, Cárdenas C, Palacios M, Barría R (2013) Presencia de agregaciones reproductivas pelágicas del poliqueto Platynereis australis (Schmarda, 1861) (Nereidae) en aguas someras subantárticas de Magallanes, Chile. Lat Am J Aquat Res 41(1):170–176CrossRefGoogle Scholar
  8. Casaux R (1998) The contrasting diet of Harpagifer antarcticus (Notothenioidei, Harpagiferidae) at two localities of the South Shetland Islands, Antarctica. Polar Biol 19:283–285CrossRefGoogle Scholar
  9. Casaux R, Barrera-Oro E (2013) Dietary overlap in inshore notothenioid fish from the Danco Coast, western Antarctic Peninsula. Polar Res 32:21319. doi: 10.3402/polar.v32i0.21319 CrossRefGoogle Scholar
  10. Casaux R, Mazzotta A, Barrera-Oro E (1990) Seasonal aspects of the biology and diet of nearshore nototheniid fish at Potter Cove, South Shetland Islands, Antarctica. Polar Biol 11:63–72CrossRefGoogle Scholar
  11. Casaux R, Barrera-Oro E, Baroni A, Ramón A (2003) Ecology of inshore notothenioid fish from the Danco Coast, Antarctic Peninsula. Polar Biol 26:157–165. doi: 10.1007/s00300-002-0463-y CrossRefGoogle Scholar
  12. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  13. Clarke A, Johnston N (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905CrossRefGoogle Scholar
  14. Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth, Plymouth Marine LaboratoryGoogle Scholar
  15. Connell A, Dunn M, Forman J (2010) Diet and dietary variation in the hoki Macruromus novaezelandiae. New Zeal J Mar Fresh 44:289–308CrossRefGoogle Scholar
  16. Cortés E (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to the elasmobranch fishes. Can J Fish Aquat Sci 54:726–738CrossRefGoogle Scholar
  17. De Witt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Inst Ichthyol, Grahamstown, pp 279–331Google Scholar
  18. Duarte W, Moreno C (1981) The specialized diet of Harpagifer bispinis: its effects on the diversity of Antarctic intertidal amphipods. Hydrobiology 80:241–250CrossRefGoogle Scholar
  19. Dunn M, Forman J (2011) Hypotheses of spatial stock structure in orange roughy Hoplostethus atlanticus inferred from diet, feeding, condition, and reproductive activity. PLoS One 6(11):e26704. doi: 10.1371/journal.pone.0026704 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  21. Eastman JT, Eakin RR (2000) An updated species list for notothenioid fish (Perciformes; Notothenioidei), with comments on Antarctic species. Arch Fish Mar Res 48:11–20Google Scholar
  22. Eastman JT, Sidell BD (2002) Measurements of buoyancy for some Antarctic notothenioid fishes from the South Shetland Islands. Polar Biol 25:753–760. doi: 10.1007/s00300-002-0398-3 Google Scholar
  23. Fernández D, Calvo J, Wakeling J, Vanella F, Johnston I (2002) Escape performance in the sub-Antarctic notothenioid fish Eleginops maclovinus. Polar Biol 25:914–920. doi: 10.1007/s00300-002-0435-2 Google Scholar
  24. Fernández DA, Ceballos S, Malanga G, Boy C, Vanella F (2012) Buoyancy of sub-Antarctic notothenioids including the sister linage of all other notothenioids (Bovichtidae). Polar Biol 35(1):99–106CrossRefGoogle Scholar
  25. Fischer AH, Henrich T, Arendt D (2010) The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool 7:31. doi: 10.1186/1742-9994-7-31 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Franklin A, Shenk T, Anderson D, Burnham K (2001) Statistical model selection: an alternative to null hypothesis testing. In: Shenk T, Franklin A (eds) Modeling in natural resource management: development, interpretation, and application. Island Press, Washington, pp 75–90Google Scholar
  27. Gotelli N, Colwell R (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  28. Gotelli N, Entsminger G (2008) EcoSim: null models software for ecology. Version 7.72 Acquired Intelligence & Kesey-BearGoogle Scholar
  29. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall, LondonGoogle Scholar
  30. Häussermann V (2006) Biodiversity of Chilean sea anemones (Cnidaria: Anthozoa): distribution patterns and zoogeographic implications, including new records for the fjord region. Invest Mar 34(2):23–35. doi: 10.4067/S0717-71782006000200003 CrossRefGoogle Scholar
  31. Hüne M, Ojeda C (2012) Estructura del ensamble de peces costeros de los canales y fiordos de la zona central de la Patagonia chilena (48°–52°S). Rev Biol Mar Oceanogr 47(3):451–460CrossRefGoogle Scholar
  32. Hüne M, Rivera G (2010) Contribución de poliquetos (Annelida: Polychaeta) en la dieta de tres especies de nototénidos (Perciformes: Notothenioidei) en la región de Magallanes. An Inst Patagonia 38(2):39–46CrossRefGoogle Scholar
  33. Hureau J (1985) Notothenoidei. In: Fisher W, Hureau J (ed) FAO species identification sheet for fishery purposes. Southern Ocean (CCAMLR Convention Fishing Areas 48, 58 y 88). FAO, Rome, pp 244–284Google Scholar
  34. Hurtubia J (1973) Trophic diversity measurement in sympatric predatory species. Ecology 54(4):885–890CrossRefGoogle Scholar
  35. Hyslop EJ (1980) Stomach contents analysis: a review of methods and their application. J Fish Biol 17:411–429CrossRefGoogle Scholar
  36. Iken K, Barrera-Oro E, Quartino M, Casaux R, Brey T (1997) Grazing by the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Antarct Sci 9:386–391CrossRefGoogle Scholar
  37. John DM, Paterson GL, Evans NJ, Ramírez ME, Spencer J, Báez PD, Ferrero TJ, Valentine CA, Reid DG (2003) Manual de biotopos marinos de la región de Aysén, Sur de Chile. Biodiversity Aysén Project, LondonGoogle Scholar
  38. Kamler E (1992) Early life history of fish. An energetics approach. Chapman & Hall, LondonCrossRefGoogle Scholar
  39. Kamler E (2002) Inter-individual and seasonal variability of biological indices in notothenioid fishes from Admiralty Bay, Antarctica. Pol Polar Res 23(3–4):265–278Google Scholar
  40. La Mesa M, Vacchi M, Zunini Sertorio T (2000) Feeding plasticity of Trematomus newnesi (Pisces, Notothenoidei) in Terra Nova Bay, Ross Sea, in relation to environmental conditions. Polar Biol 23:38–45CrossRefGoogle Scholar
  41. La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338CrossRefGoogle Scholar
  42. Laptikhovsky V (2004) A comparative study of diet in three sympatric populations of Patagonotothen species (Pisces: Nototheniidae). Polar Biol 27:202–205CrossRefGoogle Scholar
  43. Leopold M, van Damme C, van der Veer H (1998) Diet of cormorans and the impact of cormorant predation on juvenile flatfish in the Dutch Wadden Sea. J Sea Res 40:93–107CrossRefGoogle Scholar
  44. Licandeo RR, Barrientos CA, González MA (2006) Age, growth rates, sex change and feeding habits of notothenioid fish Eleginops maclovinus from the central-southern Chilean coast. Environ Biol Fish 77:51–61CrossRefGoogle Scholar
  45. Lloris D, Rucabado J (1991) Ictiofauna del Canal Beagle (Tierra del Fuego), aspectos ecológicos y análisis biogeográfico. Instituto Español de Oceanografía, MadridGoogle Scholar
  46. Magurran A (2004) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  47. Martin JP, Bastida R (2008) Contribución de las comunidades bentónicas en la dieta del róbalo (Eleginops maclovinus) en la ría Deseado (Santa Cruz, Argentina). Lat Am J Aquat Res 36(1):1–13CrossRefGoogle Scholar
  48. Moreno C, Jara F (1984) Ecological studies on fish fauna associated with Macrocystis pyrifera belts in the south Fueguian Islands, Chile. Mar Ecol Prog Ser 15:99–107CrossRefGoogle Scholar
  49. Murillo C, Oyarzún C (2002) Variación ontogenética en la dieta de Patagonotothen longipes (Steindachner 1876) (Perciformes: Nototheniidae) en el fiordo de Castro, Chiloe. Gayana 66(2):219–224. doi: 10.4067/S0717-65382002000200018 Google Scholar
  50. Nakamura I, Inada T, Takeda M, Hatanaka H (1986) Important fishes trawled off Patagonia. Japan Marine Fishery Resource Research Center, TokyoGoogle Scholar
  51. Navarro J, Pequeño G (1979) Peces litorales de los archipiélagos de Chiloé y Los Chonos, Chile. Rev Biol Mar 16(3):255–309Google Scholar
  52. Oksanen J, Blanchet F, Kindt R, Legendre P, O’Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2010) Vegan: community ecology package, version 2.0.6
  53. Porter C, Santana A (2003) Rapid 20th century retreat of Ventisquero Marinelli in the Cordillera Darwin Icefield. An Inst Patagonia 31:17–26Google Scholar
  54. Post JR, Lee JA (1996) Metabolic ontogeny of teleost fishes. Can J Fish Aquat Sci 53:910–923CrossRefGoogle Scholar
  55. Rae GA, Calvo J (1995) Fecundity and reproductive habits in Patagonothen tessellata (Richardson, 1845) from the Beagle Channel, Argentina. Antarct Sci 7:235–240CrossRefGoogle Scholar
  56. Rae GA, Calvo J (1996) Histological analysis of gonadal development in Patagonotothen tesellata (Richardson 1845) (Nototheniidae: Pisces) from the Beagle Channel, Argentina. J Appl Ichthyol 12:31–38CrossRefGoogle Scholar
  57. R Core Team (2013) R: A language and environment for statistical computing, Vienna.
  58. Read GB (2007) Taxonomy of sympatric New Zealand species of Platynereis, with description of three new species additional to P. australis (Schmarda) (Annelida: Polychaeta: Nereididae). Zootaxa 1558:1–28Google Scholar
  59. Reyes P, Hüne M (2012) Peces del Sur de Chile. Ocho Libros Ediciones, Santiago de ChileGoogle Scholar
  60. Rignot E, Rivera A, Casassa G (2003) Contribution of the Patagonia Icefields of South America to sea level rise. Science 302:434–437CrossRefPubMedGoogle Scholar
  61. Ríos C, Mutschke E, Montiel A, Gerdes D, Arntz W (2005) Soft-bottom macrobenthic faunal associations in the southern Chilean glacial fjord complex. Sci Mar 69(Suppl. 2):225–236Google Scholar
  62. Sielfeld W, Guzmán G, Amado N (2006) Distribución de peces del litoral rocoso de los canales patagónicos occidentales (48°37′S–53°34′S). An Inst Patagonia 34:21–32Google Scholar
  63. Sievers H, Silva N (2006) Masas de agua y circulación en los canales y fiordos australes. In: Silva N, Palma S (eds) Avances en el conocimiento de las aguas interiores chilenas, Puerto Montt a Cabo de Hornos. CONA, Valparaíso, pp 53–58Google Scholar
  64. Silva N, Calvete C (2002) Características oceanográficas físicas y químicas de canales australes chilenos entre golfo de Penas y el estrecho de Magallanes (Crucero CIMAR-Fiordo 2). Cienc Tecnol Mar 25(1):23–88Google Scholar
  65. Soto E, Báez P, Ramírez M, Letelier S, Naretto J, Rebolledo A (2012) Biotopos marinos intermareales entre Canal Trinidad y Canal Smyth, Sur de Chile. Rev Biol Mar Oceanogr 47(2):177–191CrossRefGoogle Scholar
  66. Thatje S, Mutschke E (1999) Distribution of abundance, biomass, production and productivity of macrozoobenthos in the sub-Antarctic Magellan Province (South America). Polar Biol 22:31–37CrossRefGoogle Scholar
  67. Vanella FA, Calvo J (2005) Influence of temperature, habitat and body mass on routine metabolic rates of Subantarctic teleosts. Sci Mar 69(Suppl. 2):317–323Google Scholar
  68. Vanella F, Fernández D, Romero M, Calvo J (2007) Changes in the fish fauna associated with a sub-Antarctic Macrocystis pyrifera kelp forest in response to canopy removal. Polar Biol 30:449–457CrossRefGoogle Scholar
  69. Wood S (2001) mgcv: GAMs and generalized ridge regression for R. R News 1:20–25Google Scholar
  70. Wood S (2006) Generalized additive models: an introduction with R. Chapman & Hall, Boca RatonGoogle Scholar
  71. Wood S, Augustin N (2002) GAMs with integrated model selection using penalized splines and applications to environmental modeling. Ecol Model 157:157–177CrossRefGoogle Scholar
  72. Zar JH (2010) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar
  73. Zuur A, Ieno E, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with R, Statistics for Biology and Health. Springer Science, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Fundación IctiológicaProvidenciaChile
  2. 2.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  3. 3.Instituto de Fomento PesqueroValparaisoChile

Personalised recommendations