Polar Biology

, Volume 38, Issue 10, pp 1583–1596 | Cite as

Reproduction, growth and early life history of the Antarctic gammarid amphipod Paramoera walkeri

  • Kathryn E. Brown
  • Catherine K. King
  • Peter L. Harrison
Original Paper


The gammarid Paramoera walkeri is one of the most abundant amphipods in near-shore Antarctic waters. There has been increasing interest in P. walkeri as a test species for ecotoxicology studies and bio-monitoring for contaminants in Antarctica, but further information is needed to improve understanding of its biology including reproduction, growth and early life history. Female P. walkeri brooding late-stage embryos were collected in summer from coastal waters in the Vestfold Hills region, East Antarctica, and were maintained in the laboratory. Timing of neonate release, brood size and early post-marsupial survival and growth (total length) of juveniles were recorded. Brood size ranged from 26 to 86 neonates per female, and juvenile survival rates were high (96 %). The increase in body length of juveniles ranged from 0.017 to 0.043 mm/day with a mean growth rate of 0.028 mm/day (0.94 % per day) over 11 weeks with strong evidence for exponential growth over time. The body lengths of laboratory-raised juveniles were not significantly different to those of wild-caught juveniles with the same number of segments (15) in the first antennae, indicating that growth may have progressed at a similar rate in vivo and in situ. Juvenile growth was similar when modelled over time or by addition of first antennal segments. This study provides new information on the reproductive biology and early life history of P. walkeri, with further evidence that Antarctic amphipods exhibit slow growth, even when food is not a limiting factor, compared with species from lower latitudes.


Antarctica Crustacean Brooding Reproduction Post-marsupial development Growth 



We thank members of the 2010/11 summer Davis field teams for assistance with collections. Figure 1 was produced from maps generated by the Australian Antarctic Data Centre and Fig. 2 was photographed by Ashley Miskelly. This research was funded through an Australian Antarctic Science grant (AAS 3054) and a PhD research scholarship from Southern Cross University. Essential logistical support was provided by the Australian Antarctic Division. We are grateful to three anonymous reviewers for comments on the original manuscript which substantially improved the final paper.

Conflict of interest

Kathryn Brown, Catherine King and Peter Harrison declare that they have no conflict of interest.

Ethical standard

Paramoera walkeri were collected in compliance with the Commonwealth of Australia, Antarctic Marine Living Resources Conservation Act 1981 under the authority of permit number AMLR 10-11-3054 issued to Peter Harrison, Southern Cross University. All institutional and national guidelines for the care and use of laboratory animals were followed.


  1. Ainley DG, Ribic CA, Fraser WR (1993) Does prey preference affect habitat choice in Antarctic seabirds? Mar Ecol Prog Ser 90:207CrossRefGoogle Scholar
  2. Aravind NP, Sheeba P, Nair KKC, Achuthankutty CT (2007) Life history and population dynamics of an estuarine amphipod, Eriopisa chilkensis Chilton (Gammaridae). Estuarine Coastal Shelf Sci 74:87–95. doi: 10.1016/j.ecss.2007.03.026 CrossRefGoogle Scholar
  3. Arndt CE, Beuchel F (2006) Life history and population dynamics of the Arctic sympagic amphipods Onisimus nanseni sars and O. glacialis sars (Gammaridea: Lysianassidae). Polar Biol 29:239–248CrossRefGoogle Scholar
  4. Arndt CE, Swadling KM (2006) Crustacea in Arctic and Antarctic sea ice: distribution, diet and life history strategies. Adv Mar Biol 51:197–315CrossRefPubMedGoogle Scholar
  5. Arntz W, Brey T, Gallardo V (1994) Antarctic zoobenthos. Oceanogr Mar Biol 32:241–304Google Scholar
  6. Arrigo KR, Weiss AM, Smith WO (1998) Physical forcing of phytoplankton dynamics in the southwestern Ross Sea. J Geophys Res Oceans 103:1007–1021. doi: 10.1029/97JC02326 CrossRefGoogle Scholar
  7. Bach L, Forbes VE, Dahllof I (2009) The amphipod Orchomenella pinguis—a potential bioindicator for contamination in the Arctic. Mar Pollut Bull 58:1664–1670. doi: 10.1016/j.marpolbul.2009.07.001 CrossRefPubMedGoogle Scholar
  8. Baird HP, Stark JS (2013) Population dynamics of the ubiquitous Antarctic benthic amphipod Orchomenella franklini and its vulnerability to environmental change. Polar Biol 36:155–167CrossRefGoogle Scholar
  9. Bone DG (1972) Aspects of the biology of the Antarctic amphipod Bovallia gigantea Pfeffer at Signey Island, South Orkney Islands. Br Antarct Surv Bull 27:105–122Google Scholar
  10. Brey T, Clarke A (1993) Population dynamics of marine benthic invertebrates in Antarctic and subantarctic environments: are there unique adaptations? Antarct Sci 5:253–266CrossRefGoogle Scholar
  11. Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22CrossRefPubMedGoogle Scholar
  12. Clark GF, Stark JS, Johnston EL, Runcie JW, Goldsworthy PM, Raymond B, Riddle MJ (2013) Light-driven tipping points in polar ecosystems. Glob Change Biol 19:3749–3761CrossRefGoogle Scholar
  13. Clarke A (1980) A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol J Linn Soc 14:77–92. doi: 10.1111/j.1095-8312.1980.tb00099.x CrossRefGoogle Scholar
  14. Clarke A (1988) Seasonality in the Antarctic marine environment. Comp Biochem Physiol B 90:461–473. doi: 10.1016/0305-0491(88)90285-4 Google Scholar
  15. Clarke A (2003) Costs and consequences of evolutionary temperature adaptation. Trends Ecol Evol 18:573–581. doi: 10.1016/j.tree.2003.08.007 CrossRefGoogle Scholar
  16. Clarke A, Peck LS (1991) The physiology of polar marine zooplankton. Polar Res 10:355–369CrossRefGoogle Scholar
  17. Clason B, Duquesne S, Liess M, Schulz R, Zauke GP (2003) Bioaccumulation of trace metals in the Antarctic amphipod Paramoera walkeri (Stebbing, 1906): comparison of two-compartment and hyperbolic toxicokinetic models. Aquat Toxicol 65:117–140. doi: 10.1016/S0166-445X(03)00120-6 CrossRefPubMedGoogle Scholar
  18. Costantini ML, Fazi S, Rossi L (1996) Size distribution of the amphipod Paramoera walkeri (Stebbing) along a depth gradient in Antarctica. Hydrobiologia 337:107–112. doi: 10.1007/BF00028511 CrossRefGoogle Scholar
  19. Dauby P, Scailteur Y, De Broyer C (2001a) Trophic diversity within the Eastern Weddell Sea amphipod community. Hydrobiologia 443:69–86CrossRefGoogle Scholar
  20. Dauby P, Scailteur Y, Chapelle G, De Broyer C (2001b) Potential impact of the main benthic amphipods on the eastern Weddell Sea shelf ecosystem (Antarctica). Polar Biol 24:657–662. doi: 10.1007/s003000100265 CrossRefGoogle Scholar
  21. De Broyer C, Lowry J, Jazdzewski K, Robert H (2007) Census of marine life. synopsis of the amphipoda of the southern ocean. Vol. 1. Catalogue of the gammaridean and corophiidean amphipoda (Crustacea) of the Southern Ocean with distribution and ecological data Bulletin de l’Institut Royal des Sciences Naturelles de Belgique. Biologie 77:1–324Google Scholar
  22. Dhargalkar VK, Burton HR, Kirkwood JM (1988) Animal associations with the dominant species of shallow water macrophytes along the coastline of the Vestfold Hills, Antarctica. Hydrobiologia 165:141–150. doi: 10.1007/BF00025581 CrossRefGoogle Scholar
  23. Duquesne S, Liess M (2003) Increased sensitivity of the macroinvertebrate Paramorea walkeri to heavy-metal contamination in the presence of solar UV radiation in Antarctic shoreline waters. Mar Ecol Prog Ser 255:183–191CrossRefGoogle Scholar
  24. Duquesne S, Riddle M (2002) Biological monitoring of heavy-metal contamination in coastal waters off Casey Station, Windmill Islands, East Antarctica. Polar Biol 25:206–215. doi: 10.1007/s00300-001-0328-9 Google Scholar
  25. Duquesne S, Riddle M, Schulz R, Liess M (2000) Effects of contaminants in the Antarctic environment—potential of the gammarid amphipod crustacean Paramorea walkeri as a biological indicator for Antarctic ecosystems based on toxicity and bioacccumulation of copper and cadmium. Aquat Toxicol 49:131–143. doi: 10.1016/s0166-445x(99)00067-3 CrossRefPubMedGoogle Scholar
  26. France SC (1993) Geographic variation among three isolated populations of the hadal amphipod Hirondellea gigas (Crustacea: Amphipoda: Lysianassoidea). Mar Ecol Prog Ser 92:277CrossRefGoogle Scholar
  27. Fraser KP, Clarke A, Peck LS (2007) Growth in the slow lane: protein metabolism in the Antarctic limpet Nacella concinna (Strebel 1908). J Exp Biol 210:2691–2699CrossRefPubMedGoogle Scholar
  28. Gambi MC, Lorenti M, Russo GF, Scipione MB (1994) Benthic associations of the shallow hard bottoms off Terra Nova Bay, Ross Sea: zonation, biomass and population structure. Antarct Sci 6:449–462CrossRefGoogle Scholar
  29. Garcia-Schroeder DL, Araujo PB (2009) Post-marsupial development of Hyalella pleoacuta (Crustacea: Amphipoda): stages 1–4. Zoologia (Curitiba) 26:391–406CrossRefGoogle Scholar
  30. Gibson JA, Swadling K, Burton H (1997) Interannual variation in dominant phytoplankton species and biomass near Davis Station, East Antarctica. In: Proceedings of the NIPR symposium on polar biology. National Institute of Polar Research, pp 77–89Google Scholar
  31. Gillies C, Stark J, Smith SA (2012) Research article: small-scale spatial variation of δ 13C and δ 15N isotopes in Antarctic carbon sources and consumers. Polar Biol 35:813–827. doi: 10.1007/s00300-011-1126-7 CrossRefGoogle Scholar
  32. Heil P (2006) Atmospheric conditions and fast ice at Davis, East Antarctica: a case study. J Geophys Res Oceans 111:CO5009. doi: 10.1029/2005JC002904 CrossRefGoogle Scholar
  33. Hunte W, Myers R (1984) Phototaxis and cannibalism in gammaridean amphipods. Mar Biol 81:75–79CrossRefGoogle Scholar
  34. Ikeda T (1990) A growth model for a hyperiid amphipod Themisto japonica (Bovallius) in the Japan Sea, based on its intermoult period and moult increment. J Oceanogr Soc Jpn 46:261–272CrossRefGoogle Scholar
  35. Jażdżewski K, Teodorczyk W, Siciński J, Kontek B (1991) Amphipod crustaceans as an important component of zoobenthos of the shallow Antarctic sublittoral. In: Watling L (ed) 7th International colloquium on Amphipoda. Developments in hydrobiology, vol 70. Springer, Netherlands, pp 105–117. doi: 10.1007/978-94-011-3542-9_10 Google Scholar
  36. Kiest KA (1993) A relationship of diet to prey abundance and the foraging behavior of Trematomus bernacchii. Polar Biol 13:291–296CrossRefGoogle Scholar
  37. Kirkwood J, Burton H (1988) Macrobenthic species assemblages in Ellis Fjord, Vestfold Hills, Antarctica. Mar Biol 97:445–457CrossRefGoogle Scholar
  38. Kunz PY, Kienle C, Gerhardt A (2010) Gammarus spp. in aquatic ecotoxicology and water quality assessment: toward integrated multilevel tests. Reviews of environmental contamination and toxicology, vol 205. Springer, Heidelberg, pp 1–76Google Scholar
  39. La Mesa M, Dalú M, Vacchi M (2004) Trophic ecology of the emerald notothen Trematomus bernacchii (Pisces, Nototheniidae) from Terra Nova Bay, Ross Sea, Antarctica. Polar Biol 27:721–728CrossRefGoogle Scholar
  40. Liess M, Champeau O, Riddle M, Schulz R, Duquesne S (2001) Combined effects of ultraviolet-B radiation and food shortage on the sensitivity of the Antarctic amphipod Paramoera walkeri to copper. Environ Toxicol Chem 20:2088–2092. doi: 10.1002/etc.5620200931 CrossRefPubMedGoogle Scholar
  41. Massom R, Reid P, Stammerjohn S, Raymond B, Fraser A, Ushio S (2013) Change and variability in East Antarctic Sea Ice seasonality, 1979/80–2009/10. PLoS ONE 8:e64756. doi: 10.1371/journal.pone.0064756 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Mcminn A, Runcie JW, Riddle M (2004) Effect of seasonal sea ice breakout on the photosynthesis of benthic diatom mats at Casey, Antarctica. J Phycol 40:62–69CrossRefGoogle Scholar
  43. Mearns AJ, Reish DJ, Oshida PS, Buchman M, Ginn T, Donnelly R (2009) Effects of pollution on marine organisms. Water Environ Res 81:2070–2125CrossRefGoogle Scholar
  44. Melvin SD, Wilson SP (2013) The utility of behavioral studies for aquatic toxicology testing: a meta-analysis. Chemosphere 93:2217–2223. doi: 10.1016/j.chemosphere.2013.07.036 CrossRefPubMedGoogle Scholar
  45. Nelson MK, Brunson EL (1995) Postembryonic growth and development of Hyalella azteca in laboratory cultures and contaminated sediments. Chemosphere 31:3129–3140. doi: 10.1016/0045-6535(95)00171-4 CrossRefGoogle Scholar
  46. Neuparth T, Costa FO, Costa MH (2002) Effects of temperature and salinity on life history of the marine amphipod Gammarus locusta. Implications for ecotoxicological testing. Ecotoxicology 11:61–73CrossRefPubMedGoogle Scholar
  47. Palmer AS, Snape I, Stark JS, Johnstone GJ, Townsend AT (2006) Baseline metal concentrations in Paramoera walkeri from East Antarctica. Mar Pollut Bull 52:1441–1449. doi: 10.1016/j.marpolbul.2006.04.012 CrossRefPubMedGoogle Scholar
  48. Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40. doi: 10.1007/s003000100308 CrossRefGoogle Scholar
  49. Peck LS, Convey P, Barnes DK (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109CrossRefPubMedGoogle Scholar
  50. Peters C, Ahlf W (2005) Reproduction of the estuarine and marine amphipod Corophium volutator (Pallas) in laboratory for toxicity testing. Chemosphere 59:525–536. doi: 10.1016/j.chemosphere.2005.01.053 CrossRefPubMedGoogle Scholar
  51. Poltermann M (2000) Growth, production and productivity of the Arctic sympagic amphipod Gammarus wilkitzkii. Mar Ecol Prog Ser 193:109–116. doi: 10.3354/meps193109 CrossRefGoogle Scholar
  52. Poltermann M, Hop H, Falk-Petersen S (2000) Life under Arctic sea ice—reproduction strategies of two sympagic (ice-associated) amphipod species, Gammarus wilkitzkii and Apherusa glacialis. Mar Biol 136:913–920. doi: 10.1007/s002270000307 CrossRefGoogle Scholar
  53. Pörtner HO (2006) Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep-Sea Res Part II Top Stud Oceanogr 53:1071–1104. doi: 10.1016/j.dsr2.2006.02.015 CrossRefGoogle Scholar
  54. Prato E, Biandolino F, Scardicchio C (2006) Postembryonic growth, development and reproduction of Gammarus aequicauda (Martynov, 1931)(Gammaridae) in laboratory culture. Zool Stud 45:503Google Scholar
  55. Puddicombe R, Johnstone G (1988) The breeding season diet of Adélie penguins at the Vestfold Hills, East Antarctica. Hydrobiologia 165:239–253CrossRefGoogle Scholar
  56. Quigley M, Lang G (1989) Measurement of amphipod body length using a digitizer. Hydrobiologia 171:255–258. doi: 10.1007/bf00008147 CrossRefGoogle Scholar
  57. Rakusa-Suszczewski S (1972) The biology of Paramoera walkeri Stebbing (Amphipoda) and the Antarctic sub-fast ice community. Pol Arch Hydrobiol 19:11–36Google Scholar
  58. Rakusa-Suszczewski S, Klekowski RZ (1973) Biology and respiration of the antarctic Amphipoda (Paramoera walkeri Stebbing) in the summer. Pol Arch Hydrobiol 20:475–488Google Scholar
  59. Sagar P (1980) Life cycle and growth of the Antarctic gammarid amphipod Paramoera walkeri (Stebbing, 1906). J R Soc NZ 10:259–270CrossRefGoogle Scholar
  60. Sainte-Marie B (1991) A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223:189–227CrossRefGoogle Scholar
  61. Sheader M (1981) Development and growth in laboratory-maintained and field populations of Parathemisto gaudichaudi (Hyperiidea: Amphipoda). J Mar Biol Soc UK 61:769–787CrossRefGoogle Scholar
  62. Smith WO, Gordon LI (1997) Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring. Geophys Res Lett 24:233–236. doi: 10.1029/96GL03926 CrossRefGoogle Scholar
  63. Stark JS, Johnstone GJ, Palmer AS, Snape I, Larner BL, Riddle MJ (2006) Monitoring the remediation of a near shore waste disposal site in Antarctica using the amphipod Paramoera walkeri and diffusive gradients in thin films (DGTs). Mar Pollut Bull 52:1595–1610. doi: 10.1016/j.marpolbul.2006.05.020 CrossRefPubMedGoogle Scholar
  64. Stark JS, Smith J, King CK, Lindsay M, Stark S, Palmer AS, Snape I, Bridgen P, Riddle M (2015) Physical, chemical, biological and ecotoxicological properties of wastewater from Davis Station, Antarctica. Cold Reg Sci Technol 113:52–62CrossRefGoogle Scholar
  65. Swadling KM, Gibson JAE, Ritz DA, Nichols PD (1997) Horizontal patchiness in sympagic organisms of the Antarctic fast ice. Antarct Sci 9:399–406. doi: 10.1017/S0954102097000515 CrossRefGoogle Scholar
  66. Tucker MJ, Burton HR (1988) The inshore marine ecosystem off the Vestfold Hills, Antarctica. In: Ferris JM, Burton HR, Johnstone GW, Bayly IAE (eds) Biology of the Vestfold Hills, Antarctica. Developments in hydrobiology, vol 34. Springer, Netherlands, pp 129–139. doi: 10.1007/978-94-009-3089-6_12 CrossRefGoogle Scholar
  67. Welton J, Clarke R (1980) Laboratory studies on the reproduction and growth of the amphipod, Gammarus pulex (L.). J Anim Ecol 49:581–592CrossRefGoogle Scholar
  68. Yemelyanova A, Temerova T, Degermendzhy A (2002) Distribution of Gammarus lacustris sars (Amphipoda, Gammaridae) in Lake Shira (Khakasia, Siberia) and laboratory study of its growth characteristics. Aquat Ecol 36:245–256. doi: 10.1023/A:1015624205389 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kathryn E. Brown
    • 1
  • Catherine K. King
    • 2
  • Peter L. Harrison
    • 1
  1. 1.Marine Ecology Research Centre, School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia
  2. 2.Antarctic Conservation and ManagementAustralian Antarctic DivisionKingstonAustralia

Personalised recommendations