Advertisement

Polar Biology

, Volume 38, Issue 10, pp 1575–1581 | Cite as

Life history of the Antarctic tardigrade, Acutuncus antarcticus, under a constant laboratory environment

  • Megumu Tsujimoto
  • Atsushi C. Suzuki
  • Satoshi Imura
Original Paper

Abstract

Tardigrades are found in most terrestrial and freshwater Antarctic ecosystems and are one of the most diverse and important groups of invertebrates in Antarctica. We developed a new laboratory system for rearing the Antarctic tardigrade Acutuncus antarcticus (Richters 1904), one of the most widespread and common Antarctic tardigrade species. To provide a description of the life history of this tardigrade, survival and reproduction of 68 individuals were observed and recorded daily at a constant temperature of 15 °C. The life-history data obtained are consistent with previous studies of other tardigrades. The exceptionally high hatching success obtained is suggested to be an important life-history characteristic of this species contributing to it often being a common and dominant species in the Antarctic habitats in which it occurs. Furthermore, high hatching success combined with very low variation in development time, under the protocol used in the current study, indicates that A. antarcticus may be a good model species for studies in developmental biology. Integrating data from this and previous studies, the importance of temperature on reproduction and growth in A. antarcticus was inferred. With terrestrial and freshwater ecosystems in some parts of Antarctica experiencing sometimes drastic contemporary climatic and environmental changes, studies of the effect of temperature on generation time and reproductive success in Antarctic tardigrades are urgently required, as these animals are important elements of community structure and function in polar ecosystems.

Keywords

Tardigrade Antarctica Reproduction Hatching success Lifespan 

Notes

Acknowledgments

We thank Daiki Horikawa and Hiroshi Kagoshima for useful advice in establishing the rearing method and data collection. Peter Convey, Sandra McInnes and three anonymous reviewers provided helpful comments and advice on the manuscript. This study was supported by Grant-in-Aid for Scientific Research No. 23247012 to SI from the Japan Society for the Promotion of Science, and also contributes to the SCAR AnT-ERA research programme.

References

  1. Adams B, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell J, Frati F, Hogg I, Newsham N, O’Donnell A, Russell N, Seppelt R, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018CrossRefGoogle Scholar
  2. Altiero T, Rebecchi L, Bertolani R (2006) Phenotypic variations in the life history of two clones of Macrobiotus richtersi (Eutardigrada, Macrobiotidae). Hydrobiologia 558:33–40CrossRefGoogle Scholar
  3. Andrássy I (1998) Nematodes in the sixth continent. J Nematode Morph Syst 1:107–186Google Scholar
  4. Baumann H (1970) Lebenslauf und Lebensweise von Macrobiotus hufelandi Schultze (Tardigrada). Veroff Ubersee-Mus Bremen 4:29–43 (Article in German) Google Scholar
  5. Bertolani R (1983) Tardigrada. Oogenesis, oviposition, and oosorption. In: Adiodi KG, Adyodi RG (eds) Reproductive biology of invertebrates, vol 1. Wiley, Chichester, pp 431–441Google Scholar
  6. Block W, Smith RIL, Kennedy AD (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol Rev 84:449–484CrossRefPubMedGoogle Scholar
  7. Convey P (1997) How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? J Thermal Biol 22:429–440CrossRefGoogle Scholar
  8. Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641CrossRefGoogle Scholar
  9. Convey P, McInnes SJ (2005) Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica. Ecology 86:519–527CrossRefGoogle Scholar
  10. Convey P, Chown SL, Clarke A, Barnes DKA, Cummings V, Ducklow H, Frati F, Green TGA, Gordon S, Griffiths H, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons B, McMinn A, Peck LS, Quesada A, Schiaparelli S, Wall D (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244CrossRefGoogle Scholar
  11. Dastych H (1984) The Tardigrada from Antarctic with descriptions of several new species. Acta Zool Cracov 27:377–436Google Scholar
  12. Dastych H (1991) Redescription of Hypsibius antarcticus (Richters, 1904), with some notes on Hypsibius arcticus (Murray, 1907) (Tardigrada). Mitt Hamb Zool Mus Inst 88:141–159Google Scholar
  13. Degma P, Bertolani R, Guidetti R (2009–2014) Actual checklist of Tardigrada species (ver. 26, 10-07-2014). http://www.tardigrada.modena.unimo.it/miscellanea/ActualchecklistofTardigrada.pdf
  14. Dougherty E (1964) Cultivation and nutrition of micrometazoa. II. An Antarctic strain of the tardigrade Hypsibius arcticus (Murray, 1907) Marcus, 1928. Trans Am Microsc Soc 83:7–11CrossRefGoogle Scholar
  15. Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559CrossRefPubMedGoogle Scholar
  16. Galkovskaja A (1987) Planktonic rotifers and temperature. Hydrobiologia 147:307–317CrossRefGoogle Scholar
  17. Gibson JAE, Comer L, Agius JT, McInnes SJ, Marley NJ (2007) Tardigrade eggs and exuviae in Antarctic lake sediments: insights into Holocene dynamics and origins of the fauna. J Limnol 66(s1):65–71CrossRefGoogle Scholar
  18. Guidetti R, Rebecchi L, Cesari M, McInnes SJ (2014) Mopsechiniscus franciscae, a new species of a rare genus of Tardigrada from continental Antarctica. Polar Biol 37:1221–1233CrossRefGoogle Scholar
  19. Hogg ID, Stevens MI, Wall DH (2014) Invertebrates. In: Cowan D (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, Berlin, pp 55–78CrossRefGoogle Scholar
  20. Hohberg K (2006) Tardigrade species composition in young soils and some aspects on life history of Macrobiotus richtersi J. Murray, 1911. Pedobiologia 50:267–274CrossRefGoogle Scholar
  21. Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Yukuhiro F, Sakashita T, Hamada N, Wada S, Funayama T, Katagiri C, Kobayashi Y, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8:549–556CrossRefPubMedGoogle Scholar
  22. Kagoshima H, Imura S, Suzuki AC (2013) Molecular and morphological analysis of an Antarctic tardigrade, Acutuncus antarcticus. J Limnol 72(s1):15–23Google Scholar
  23. Kinchin I (1994) The biology of tardigrades. Portland Press Ltd, London, p 186Google Scholar
  24. Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing lifespan. Mech Ageing Dev 6:413–429CrossRefPubMedGoogle Scholar
  25. Lamb MJ (1968) Temperature and lifespan in Drosophila. Nature 220:808–809CrossRefPubMedGoogle Scholar
  26. Lemloh ML, Brümmer F, Schill RO (2011) Life history traits of bisexual tardigrades: Paramacrobiotus tonollii and Macrobiotus sapiens. J Zool Syst Evol Res 49(Suppl 1):58–61CrossRefGoogle Scholar
  27. Marcus E (1928) Spinnentiere oder Arachnoidea IV: Bärtierchen (Tardigrada). Springer, JenaGoogle Scholar
  28. Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38:3141–3151CrossRefGoogle Scholar
  29. McInnes SJ (1995) Tardigrades from Signy Island, South Orkney Islands, with particular reference to freshwater species. J Nat Hist 29:1419–1445CrossRefGoogle Scholar
  30. Michalczyk L, Welnicz W, Frohme M, Kaczmarek L (2012) Redescriptions of three Milnesium Doyere, 1840 taxa (Tardigrada: Eutardigrada: Milnesiidae), including the nominal species for the genus. Zootaxa 3154:1–20Google Scholar
  31. Peck L, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109CrossRefPubMedGoogle Scholar
  32. Pérez-Legaspi IA, Rico-Martínez R (1998) Effect of temperature and food concentration in two species of littoral rotifers. Hydrobiologia 387(388):341–348CrossRefGoogle Scholar
  33. Pilato G, Binda MG (1997) Acutuncus, a new genus of Hypsibiidae (Eutardigrada). Entomol Mitt Zool Mus Hamb 12:159–162Google Scholar
  34. Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Richard Harrigan P (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645CrossRefPubMedGoogle Scholar
  35. Sarma SSS, Rao TR (1991) The combined effects of food and temperature on the life history parameters of Brachionus patulus Müller (Rotifera). Int Revue Hydrobiol 76:225–239CrossRefGoogle Scholar
  36. Schill RO (2013) Life-history traits in the tardigrade species Paramacrobiotus kenianus and Paramacrobiotus palaui. J Limnol 72(s1):160–165Google Scholar
  37. Schill RO, Fritz GB (2008) Desiccation tolerance in embryonic stages of the tardigrade. J Zool 276:103–107CrossRefGoogle Scholar
  38. Smith RIL (1988) Recording bryophyte microclimate in remote and severe environments. In: Glime JM (ed) Methods in bryology. Hattori Botanical Laboratory, Nichinan, pp 275–284Google Scholar
  39. Sohlenius B, Boström S (2008) Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biol 31:817–825CrossRefGoogle Scholar
  40. Suzuki AC (2003) Life history of Milnesium tardigradum Doyere (Tardigrada) under a rearing environment. Zool Sci 20:49–57CrossRefPubMedGoogle Scholar
  41. Tsujimoto M, McInnes SJ, Convey P, Imura S (2014) Preliminary description of tardigrade species diversity and distribution pattern around coastal Syowa Station and inland Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Polar Biol 37:1361–1367CrossRefGoogle Scholar
  42. Turner J, Bindchadler R, Convey P, Di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (eds) (2009) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, CambridgeGoogle Scholar
  43. Velasco-Castrillón A, Schultz MB, Colombo F, Gibson JAE, Davies KA, Austin AD, Stevens MI (2014a) Distribution and diversity of microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS ONE 9:e87529PubMedCentralCrossRefPubMedGoogle Scholar
  44. Velasco-Castrillón A, Gibson JAE, Stevens MI (2014b) A review of current Antarctic limno-terrestrial microfauna. Polar Biol 37:1517–1531CrossRefGoogle Scholar
  45. Wall DH (2005) Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarct Sci 17:523–531CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Megumu Tsujimoto
    • 1
  • Atsushi C. Suzuki
    • 2
  • Satoshi Imura
    • 1
    • 3
  1. 1.National Institute of Polar ResearchTachikawa-shiJapan
  2. 2.Keio UniversityHiyoshiJapan
  3. 3.SOKENDAI (The Graduate University for Advanced Studies)Tachikawa-shiJapan

Personalised recommendations