Polar Biology

, Volume 38, Issue 9, pp 1461–1481 | Cite as

Inter-annual variability of summer mesozooplankton communities of the western Chukchi Sea: 2004–2012

  • Elizaveta A. ErshovaEmail author
  • Russell R. Hopcroft
  • Ksenia N. Kosobokova
Original Paper


The Chukchi Sea shelf is a complex transition zone between the Pacific and Arctic Oceans, on which climate variation may have a profound impact. We examined summer zooplankton community structure of the western Chukchi Sea in Alaskan and Russian waters during 2004, 2009, 2010 and 2012 within the ongoing Russian-American Long-term Census of the Arctic program. The four study years were very different both in water mass properties and in zooplankton community structure. A “warm” year with an early ice retreat and highest water temperatures occurred in 2004, whereas the years 2009–2012 were “cold” with a later-than-average ice retreat and colder average water temperatures during the sampling period. The extent and prominence of different water masses (Bering Sea–Anadyr Water, Alaska Coastal Current, Siberian Coastal Current, Resident Chukchi Water) within the Chukchi Sea varied between years, which was in turn reflected within the zooplankton communities. Community structure was highly correlated with water mass properties, with bottom temperature being the most significant factor influencing communities. The “cold” summers of 2009–2012 had nearly twice the biomass and abundance of zooplankton compared with the “warm” summer of 2004. Biomass was dominated by the large copepod Calanus glacialis believed to originate from the Bering Sea, and abundance was dominated by small shelf species of copepods, such as Pseudocalanus spp., Acartia spp. and Oithona similis. We discuss the implications of the inter-annual variability of planktonic communities within the Chukchi Sea and the possible effects of longer-term climate change.


Chukchi Sea Mesozooplankton assemblages Climate change Pelagic ecosystems 



We thank Kathy Crane of NOAA for continuing support of the RUSALCA program, Marshall Swartz and Robert Pickart for providing physical oceanographic data, Terry Whitledge for providing chlorophyll values, and the crew and scientists of RV “Professor Khromov” for various logistical support. We also thank three anonymous reviewers for providing helpful comments on improving the manuscript. This publication is the result in part of research sponsored by the Cooperative Institute for Alaska Research with funds from the National Oceanic and Atmospheric Administration under cooperative agreements NA17RJ1224, NA13OAR4320056 and NA08OAR4320870 with the University of Alaska. Partial support for E.A.E. was also provided by the UAF Center for Global Change Student Research Award with funding from CIFAR 2008–2014 cooperative agreement NA08OAR4320751. The work of K.N.K. and E.A.E. was also partially supported by Russian Foundation for Basic Research under Grant 13-04-00551 and Russian Scientific Foundation Grant No. 14-50-00095.

Supplementary material

300_2015_1709_MOESM1_ESM.pdf (18.4 mb)
Supplementary material 1 (PDF 18854 kb)
300_2015_1709_MOESM2_ESM.pdf (24.5 mb)
Supplementary material 2 (PDF 25138 kb)


  1. Arrigo KRR, van Dijken GL (2011) Secular trends in Arctic Ocean net primary production. J Geophys Res 116:C09011. doi: 10.1029/2011JC007151 Google Scholar
  2. Bailey TG, Youngbluth MJ, Owen GP (1995) Chemical composition and metabolic rates of gelatinous zooplankton from midwater and benthic boundary layer environments off Cape Hatteras, North Carolina, USA. Mar Ecol Prog Ser 122:121–134. doi: 10.3354/meps122121 CrossRefGoogle Scholar
  3. Båmstedt U (1986) Chemical composition and energy content. In: Corner EDS, O’Hara SCM (eds) The biological chemistry of marine copepods. Oxford University Press, Oxford, pp 1–58Google Scholar
  4. Becker RA, Wilks AR (2013) Maps: draw geographical maps. R package version 2.3Google Scholar
  5. Brodeur RD, Sugisaki H, Hunt GL Jr (2002) Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Mar Ecol Prog Ser 233:89–103. doi: 10.3354/meps233089 CrossRefGoogle Scholar
  6. Brodeur RD, Decker MB, Ciannelli L, Purcell JE, Bond NA, Stabeno PJ, Acuna E, Hunt GL Jr (2008) Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Prog Oceanogr 77:103–111. doi: 10.1016/j.pocean.2008.03.017 CrossRefGoogle Scholar
  7. Carmack E, Wassmann P (2006) Food webs and physical–biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog Oceanogr 71:446–477. doi: 10.1016/j.pocean.2006.10.004 CrossRefGoogle Scholar
  8. Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219CrossRefGoogle Scholar
  9. Clarke KR, Gorley RN (2005) PRIMER: Getting started with v6. Plymouth, PRIMER-E LtdGoogle Scholar
  10. Coachman LK, Aagaard K, Tripp RB (1975) Bering Strait: the regional physical oceanography. University of Washington Press, WashingtonGoogle Scholar
  11. Coyle KO, Eisner LB, Mueter F, Pinchuk AI, Janout MA, Cieciel KD, Farley EV, Andrews AG III (2011) Climate change in the southeastern Bering Sea: impacts on pollock stocks and implications for the oscillating control hypothesis. Fish Oceanogr 20:139–156. doi: 10.1111/j.1365-2419.2011.00574.x CrossRefGoogle Scholar
  12. Dixon P (2009) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x CrossRefGoogle Scholar
  13. Duarte CM, Agustí S, Wassmann P et al (2012) Tipping elements in the Arctic marine ecosystem. Ambio 41:44–55. doi: 10.1007/s13280-011-0224-7 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Eisner LB, Hillgruber N, Martinson E, Maselko J (2012) Pelagic fish and zooplankton species assemblages in relation to water mass characteristics in the northern Bering and southeast Chukchi seas. Polar Biol 36:87–113. doi: 10.1007/s00300-012-1241-0 CrossRefGoogle Scholar
  15. Eisner LB, Napp JM, Mier KL, Pinchuk AI, Andrews AG (2014) Climate-mediated changes in zooplankton community structure for the eastern Bering Sea. Deep-Sea Res II. doi: 10.1016/j.dsr2.2012.03.001 Google Scholar
  16. Gerritsen H (2013) Mapplots: data visualisation on maps. R package version 1.4Google Scholar
  17. Grebmeier MJ, Maslowski W (eds) (2014) The Pacific Arctic region—ecosystem status and trends in a rapidly changing environment. Springer, Netherlands. doi: 10.1007/978-94-017-8863-2
  18. Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231. doi: 10.1016/j.pocean.2006.09.007 CrossRefGoogle Scholar
  19. Hopcroft RR, Kosobokova KN, Pinchuk AI (2010) Zooplankton community patterns in the Chukchi Sea during summer 2004. Deep-Sea Res II 57:27–39. doi: 10.1016/j.dsr2.2009.08.003 CrossRefGoogle Scholar
  20. Hopcroft RR, Hariharan P, Questel J, Lamb J, Lessard E, Foy M, Clarke-Hopcroft C (2014) Oceanographic assessment of the planktonic communities in the northeastern Chukchi Sea. Report for Survey year 2012. Chukchi Sea Environmental ProgramGoogle Scholar
  21. Hunt GL Jr, Coyle KO, Eisner LB et al (2011) Climate impacts on eastern Bering Sea food webs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES J Mar Sci 68:1230–1243. doi: 10.1093/icesjms/fsr036 CrossRefGoogle Scholar
  22. Hunt GL Jr, Blanchard AL, Boveng P et al (2013) The Barents and Chukchi Seas: comparison of two Arctic shelf ecosystems. J Mar Syst 109:43–68. doi: 10.1016/j.jmarsys.2012.08.003 CrossRefGoogle Scholar
  23. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. doi:  10.1017/CBO9781107415324
  24. Kasuya T, Ishimaru T, Murano M (2000) Metabolic characteristics of the lobate ctenophore Bolinopsis mikado (Moser). Plankton Biol Ecol 47:114–121Google Scholar
  25. Kosobokova KN, Hopcroft RR (2010) Diversity and vertical distribution of mesozooplankton in the Arctic’s Canada Basin. Deep-Sea Res II 57:96–110. doi: 10.1016/j.dsr2.2009.08.009 CrossRefGoogle Scholar
  26. Kosobokova KN, Pertsova NM (2012) Zooplankton Belogo morja: struktura, dinamika i ekologija soobshestv. In: Lisitsyn AP (ed) Sistema Belogo Morja: Prirodnaja Sreda Vodosbora Belogo Morja. Nauchnyj mir, Moscow, pp 640–675Google Scholar
  27. Kremer P, Canino MF, Gilmer RW (1986) Metabolism of epipelagic tropical ctenophores. Mar Biol 90:403–412. doi: 10.1007/BF00428564 CrossRefGoogle Scholar
  28. Kulikov AS (1992) Characteristics of zooplankton communities. In: Nagel AP (ed) Results of the third joint US–USSR Bering and Chukchi Seas expedition (BERPAC), Summer 1988. US Fish and Wildlife Service, Washington, p 161Google Scholar
  29. Kwasniewski S, Gluchowska M, Walkusz W et al (2012) Interannual changes in zooplankton on the West Spitsbergen Shelf in relation to hydrography and their consequences for the diet of planktivorous seabirds. ICES J Mar Sci 69:890–901. doi: 10.1093/icesjms/fss076 CrossRefGoogle Scholar
  30. Lane PV, Llinás L, Smith SL, Pilz D (2008) Zooplankton distribution in the western Arctic during summer 2002: hydrographic habitats and implications for food chain dynamics. J Marine Sys 70:97–133. doi: 10.1016/j.jmarsys.2007.04.001 CrossRefGoogle Scholar
  31. Larson RJ (1986) Seasonal changes in the standing stocks, growth rates, and production rates of gelatinous predators in Saanich Inlet, British Columbia. Mar Ecol Prog Ser 33:89–98CrossRefGoogle Scholar
  32. Lee SH, Whitledge TE, Kang SH (2007) Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Cont Shelf Res 27:2231–2249. doi: 10.1016/j.csr.2007.05.009 CrossRefGoogle Scholar
  33. Lee SH, Joo HM, Liu Z, Chen J, He J (2012) Phytoplankton productivity in newly opened waters of the Western Arctic Ocean. Deep-Sea Res II 81:18–27. doi: 10.1016/j.dsr2.2011.06.005 CrossRefGoogle Scholar
  34. Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539. doi: 10.1126/science.1179798 PubMedCrossRefGoogle Scholar
  35. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  36. Matsuno K, Yamaguchi A, Hirawake T, Imai I (2011) Year-to-year changes of the mesozooplankton community in the Chukchi Sea during summers of 1991, 1992 and 2007, 2008. Polar Biol 34:1349–1360. doi: 10.1007/s00300-011-0988-z CrossRefGoogle Scholar
  37. Matthews JBL, Hestad L (1977) Ecological studies on the deep-water pelagic community of Korsfjorden, western Norway. Sarsia 63:57–63Google Scholar
  38. Moore SE, George JC, Coyle KO, Weingartner TJ (1995) Bowhead whales along the Chukotka Coast in autumn. Arctic 48:155–160. doi: 10.14430/arctic1237 CrossRefGoogle Scholar
  39. Nelson RJ, Carmack EC, McLaughlin FA, Cooper GA (2009) Penetration of Pacific zooplankton into the western Arctic Ocean tracked with molecular population genetics. Mar Ecol Prog Ser 381:129–138. doi: 10.3354/meps07940 CrossRefGoogle Scholar
  40. Oksanen J, Blanchet FG, Kindt R et al (2013) Vegan: community ecology package. R package version 2.0-9Google Scholar
  41. Pavshtiks EA (1984) Zooplankton of the Chukchi Sea as indices of water origins. Trudy Arkticheskogo i Antarkticheskogo Nauchno-Issledovatel’skogo Instituta 368:140–153Google Scholar
  42. Pavshtiks AE (1994) Composition and quantitative distribution of the zooplankton in the East Siberian Sea. Ekosistemy, flora i fauna Chaunskoi guby Vostochno- Sibirskogo morya. Zoological Institute RAS, St. Petersburg, pp 17–47Google Scholar
  43. Percy JA (1989) Abundance, biomass, and size frequency distribution of an arctic ctenophore, Mertensia ovum (Fabricius) from Frobisher Bay, Canada. Sarsia 74:95–105Google Scholar
  44. Pickart RS, Pratt LJ, Torres DJ et al (2010) Evolution and dynamics of the flow through Herald Canyon in the western Chukchi Sea. Deep-Sea Res II 57:5–26. doi: 10.1016/j.dsr2.2009.08.002 CrossRefGoogle Scholar
  45. Pisareva MN, Pickart RS, Spall MA, Torres DJ, Moore GWK (accepted) Flow of Pacific water in the western Chukchi sea: results from the 2009 RUSALCA expedition. Deep-Sea Res IGoogle Scholar
  46. Questel JM, Clarke C, Hopcroft RR (2013) Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall. Cont Shelf Res 67:23–41. doi: 10.1016/j.csr.2012.11.003 CrossRefGoogle Scholar
  47. Roff JC, Hopcroft RR (1986) High precision microcomputer based measuring system for ecological research. Can J Fish Aquat Sci 43:2044–2048CrossRefGoogle Scholar
  48. Sakshaug E (2004) Primary and secondary production in the Arctic Seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic ocean. Springer, Berlin, pp 57–81CrossRefGoogle Scholar
  49. Shelden KEW, Mocklin JA (eds) (2013) Bowhead whale feeding ecology study (BOWFEST) in the western Beaufort Sea. Final Report, OCS Study BOEM 2013-0114. National Marine Mammal Laboratory, Alaska Fisheries Science Center, NMFS, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115-6349Google Scholar
  50. Springer AM, Roseneau DG, Murphy EC, Springer MI (1984) Environmental controls of marine food webs: food habits of seabirds in the Eastern Chukchi Sea. Can J Fish Aquat Sci 41:1202–1215. doi: 10.1139/f84-142 CrossRefGoogle Scholar
  51. Springer AM, McRoy CP, Turco KR (1989) The paradox of pelagic food webs in the northern Bering Sea –II. Zooplankton communities. Cont Shelf Res 9:359–386CrossRefGoogle Scholar
  52. Stepanova VS (1937) Biological indicators of currents in the northern Bering and southern Chukchi Seas. Issledovanija Morei SSSR 25:175–216Google Scholar
  53. Tremblay J-É, Robert D, Varela DE, Lovejoy C, Darnis G, Nelson J, Sastri AR (2012) Current state and trends in Canadian Arctic marine ecosystems: I. Primary production. Climatic Change 115:161–178. doi: 10.1007/s10584-012-0496-3 CrossRefGoogle Scholar
  54. Weingartner TJ, Danielson S, Sasaki Y, Winsor P, Potter R, Statscewich H (1999) The Siberian coastal current: a wind- and buoyancy-forced Arctic coastal current. J Geophys Res 104:29697–29713. doi: 10.1029/1999JC900161 CrossRefGoogle Scholar
  55. Weingartner TJ, Dobbins E, Danielson S et al (2013) Hydrographic variability over the northeastern Chukchi Sea shelf in summer–fall 2008–2010. Cont Shelf Res 67:5–22. doi: 10.1016/j.csr.2013.03.012 CrossRefGoogle Scholar
  56. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, BerlinCrossRefGoogle Scholar
  57. Woodgate RA, Weingartner TJ, Lindsay R (2012) Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys Res Lett 39:L24603. doi: 10.1029/2012GL054092 Google Scholar
  58. Wassmann P, Kosobokova KN, Slagstad D, Drinkwater K, Hopcroft RR, Moore SE, Ellingsen I, Nelson RJ, Popova E, Berge J, Carmack E (accepted) The contiguous domains of Arctic Ocean advection: trails of life and death. Prog OceanogrGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Elizaveta A. Ershova
    • 1
    • 2
    Email author
  • Russell R. Hopcroft
    • 1
  • Ksenia N. Kosobokova
    • 2
  1. 1.University of Alaska FairbanksFairbanksUSA
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations