Advertisement

Polar Biology

, Volume 38, Issue 9, pp 1335–1343 | Cite as

Mercury accumulation in gentoo penguins Pygoscelis papua: spatial, temporal and sexual intraspecific variations

  • Sara PedroEmail author
  • José C. Xavier
  • Sílvia Tavares
  • Phil N. Trathan
  • Norman Ratcliffe
  • Vitor H. Paiva
  • Renata Medeiros
  • Rui P. Vieira
  • Filipe R. Ceia
  • Eduarda Pereira
  • Miguel A. Pardal
Original Paper

Abstract

Mercury emissions have increased over the past decades affecting even remote areas such as Antarctica. As gentoo penguins (Pygoscelis papua) breed on many of the islands surrounding Antarctica, foraging close to their colonies, their mercury load should reflect concentrations in the region. We therefore evaluated mercury concentrations in adult gentoo penguin feathers at Bird Island, South Georgia. We found no significant differences in mercury levels between 2009 and 2010 (mean ± SD 0.97 ± 0.67 mg kg−1, mean ± SD 1.13 ± 0.62 mg kg−1, respectively). Stable nitrogen isotope values in feathers indicated that feeding habits had a stronger influence on male mercury concentrations, whereas stable carbon isotope values indicated that foraging habitat had a stronger influence on females. Though no temporal variation in levels of mercury in gentoo penguin feathers was observed, spatial differences were evident when compared with previous studies. Our results could have implications for other animals higher in the food web that prey upon gentoo penguins, with potential consequential effects on their reproduction and development.

Keywords

Mercury Trophic level Stable isotopes Antarctica 

Notes

Acknowledgments

This work contributes to the BAS Ecosystems programme. The work was sponsored by the Foundation for Science and Technology (FCT; Portugal) under the project POLAR, within the Portuguese Polar Program PROPOLAR, and a postdoctoral grant to Filipe R. Ceia (SFRH/BPD/95372/2013), and part of the international programs ICED (Integrating climate and ecosystem dynamics of the Southern Ocean) and SCAR-AnT-ERA (Antarctic Thresholds, ecosystem resilience and adaptation of the Scientific committee for Antarctic Research) and of the SCAR EGBAMM (expert group on Birds and Antarctic marine mammals of SCAR).

References

  1. Ancora S, Volpi V, Olmastroni S et al (2002) Assumption and elimination of trace elements in Adélie penguins from Antarctica: a preliminary study. Mar Environ Res 54:341–344PubMedCrossRefGoogle Scholar
  2. Anderson O, Phillips R, McDonald R et al (2009) Influence of trophic position and foraging range on mercury levels within a seabird community. Mar Ecol Prog Ser 375:277–288. doi: 10.3354/meps07784 CrossRefGoogle Scholar
  3. Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226. doi: 10.1016/j.scitotenv.2008.06.062 PubMedCrossRefGoogle Scholar
  4. Bearhop S, Phillips R, McGill R et al (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164. doi: 10.3354/meps311157 CrossRefGoogle Scholar
  5. Becker PH, González-solís J, Behrends B, Croxall J (2002) Feather mercury levels in seabirds at South Georgia: influence of trophic position, sex and age. Mar Ecol Prog Ser 243:261–269CrossRefGoogle Scholar
  6. Berrow SD, Taylor RI, Murray AW (1999) Influence of sampling protocol on diet determination of gentoo penguins Pygoscelis papua and Antarctic fur seals Arctocephalus gazella. Polar Biol 22:156–163. doi: 10.1007/s003000050405 CrossRefGoogle Scholar
  7. Blévin P, Carravieri A, Jaeger A et al (2013) Wide range of mercury contamination in chicks of southern ocean seabirds. PLoS One. doi: 10.1371/journal.pone.0054508 PubMedCentralPubMedGoogle Scholar
  8. Bocher P, Caurant F, Miramand P et al (2003) Influence of the diet on the bioaccumulation of heavy metals in zooplankton-eating petrels at Kerguelen archipelago, Southern Indian Ocean. Polar Biol 26:759–767. doi: 10.1007/s00300-003-0552-6 CrossRefGoogle Scholar
  9. Bond AL, Diamond AW (2009) Mercury concentrations in seabird tissues from Machias Seal Island, New Brunswick, Canada. Sci Total Environ 407:4340–4347. doi: 10.1016/j.scitotenv.2009.04.018 PubMedCrossRefGoogle Scholar
  10. Brasso RL, Polito MJ (2013) Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: case studies of two polar seabirds. Mar Pollut Bull 75:244–249. doi: 10.1016/j.marpolbul.2013.08.003 PubMedCrossRefGoogle Scholar
  11. Brasso RL, Abel S, Polito MJ (2012) Pattern of mercury allocation into egg components is independent of dietary exposure in Gentoo penguins. Arch Environ Contam Toxicol 62:494–501. doi: 10.1007/s00244-011-9714-7 PubMedCrossRefGoogle Scholar
  12. Brasso RL, Drummond BE, Borrett SR et al (2013) Unique pattern of molt leads to low intraindividual variation in feather mercury concentrations in penguins. Environ Toxicol Chem 32:2331–2334. doi: 10.1002/etc.2303 PubMedCrossRefGoogle Scholar
  13. Brasso RL, Polito MJ, Emslie SD (2014) Multi-tissue analyses reveal limited inter-annual and seasonal variation in mercury exposure in an Antarctic penguin community. Ecotoxicology 23:1494–1504. doi: 10.1007/s10646-014-1291-x PubMedCrossRefGoogle Scholar
  14. Braune BM, Mallory ML, Gilchrist HG (2006) Elevated mercury levels in a declining population of ivory gulls in the Canadian Arctic. Mar Pollut Bull 52:978–982. doi: 10.1016/j.marpolbul.2006.04.013 PubMedCrossRefGoogle Scholar
  15. Braune B, Chételat J, Amyot M et al (2015) Mercury in the marine environment of the Canadian Arctic: review of recent findings. Sci Total Environ 509–510:67–90. doi: 10.1016/j.scitotenv.2014.05.133 PubMedCrossRefGoogle Scholar
  16. Burnham KP, Anderson DR (2002) Chapter 2. Information and likelihood theory : a basis for model selection and inference. In: Burnham KP, Anderson DR (eds) Model sel. multimodel inference. Springer, New York, pp 49–57Google Scholar
  17. Bustamante P, Bocher P, Chérel Y et al (2003) Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Sci Total Environ 313:25–39. doi: 10.1016/S0048-9697(03)00265-1 PubMedCrossRefGoogle Scholar
  18. Carravieri A, Bustamante P, Churlaud C, Cherel Y (2013) Penguins as bioindicators of mercury contamination in the Southern Ocean: birds from the Kerguelen Islands as a case study. Sci Total Environ 454–455:141–148. doi: 10.1016/j.scitotenv.2013.02.060 PubMedCrossRefGoogle Scholar
  19. Carravieri A, Bustamante P, Churlaud C et al (2014a) Moulting patterns drive within-individual variations of stable isotopes and mercury in seabird body feathers: implications for monitoring of the marine environment. Mar Biol 161:963–968. doi: 10.1007/s00227-014-2394-x CrossRefGoogle Scholar
  20. Carravieri A, Cherel Y, Blévin P et al (2014b) Mercury exposure in a large subantarctic avian community. Environ Pollut 190:51–57. doi: 10.1016/j.envpol.2014.03.017 PubMedCrossRefGoogle Scholar
  21. CCAMLR (2014) Ecosystem monitoring program: standard methods. Commission for the Conservation of Antarctic Marine Living Resources, Tasmania, pp 1–233Google Scholar
  22. Cherel Y, Hobson K (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287CrossRefGoogle Scholar
  23. Cherel Y, Jaeger A, Alderman R et al (2013) A comprehensive isotopic investigation of habitat preferences in nonbreeding albatrosses from the Southern Ocean. Ecography 36:277–286. doi: 10.1111/j.1600-0587.2012.07466.x CrossRefGoogle Scholar
  24. Condon A, Cristol D (2009) Feather growth influences blood mercury level of young songbirds. Environ Toxicol Chem 28:395–401. doi: 10.1897/08-094.1 PubMedCrossRefGoogle Scholar
  25. Cossa D, Heimbu L, Lannuzel D et al (2011) Mercury in the Southern Ocean. Geochim Cosmochim Acta 75:4037–4052. doi: 10.1016/j.gca.2011.05.001 CrossRefGoogle Scholar
  26. Croxall JP, Reid K, Prince PA (1999) Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar Ecol Prog Ser 177:115–131. doi: 10.3354/meps177115 CrossRefGoogle Scholar
  27. Davis RW, Croxall JP, O’Connell MJ (1989) The reproductive energetics of gentoo (Pygoscelis papua) and macaroni (Eudyptes chrysolophus) penguins at South Georgia. J Anim Ecol 58:59–74CrossRefGoogle Scholar
  28. Dietz R, Outridge PM, Hobson KA (2009) Anthropogenic contributions to mercury levels in present-day Arctic animals-A review. Sci Total Environ 407:6120–6131. doi: 10.1016/j.scitotenv.2009.08.036 PubMedCrossRefGoogle Scholar
  29. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662. doi: 10.1021/cr050353m PubMedCrossRefGoogle Scholar
  30. Frias JE, Gil MN, Esteves JL et al (2012) Mercury levels in feathers of Magellanic penguins. Mar Pollut Bull 64:1265–1269. doi: 10.1016/j.marpolbul.2012.02.024 PubMedCrossRefGoogle Scholar
  31. Goutte A, Barbraud C, Meillère A et al (2014a) Demographic consequences of heavy metals and persistent organic pollutants in a vulnerable long-lived bird, the wandering albatross. Proc R Soc B. doi: 10.1098/rspb.2013.3313 PubMedCentralPubMedGoogle Scholar
  32. Goutte A, Bustamante P, Barbraud C et al (2014b) Demographic responses to mercury exposure in two closely related antarctic top predators. Ecology 95:1075–1086. doi: 10.1890/13-1229.1 PubMedCrossRefGoogle Scholar
  33. Grecian WJ, McGill RAR, Phillips RA et al (2015) Quantifying variation in δ13C and δ15N isotopes within and between feathers and individuals: is one sample enough? Mar Biol 162:733–741. doi: 10.1007/s00227-015-2618-8 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Griffiths R, Double MC, Orr K, Dawson R (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075. doi: 10.1046/j.1365-294x.1998.00389.x PubMedCrossRefGoogle Scholar
  35. Hallanger IG, Warner NA, Ruus A et al (2011) Seasonality in contaminant accumulation in Arctic marine pelagic food webs using trophic magnification factor as a measure of bioaccumulation. Environ Toxicol Chem 30:1026–1035. doi: 10.1002/etc.488 PubMedCrossRefGoogle Scholar
  36. Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461. doi: 10.1111/j.1474-919X.2008.00839.x CrossRefGoogle Scholar
  37. Jouventin P (1982) Visual and vocal signals in penguins, their evolution and adaptive characters. Verlag Paul Parey, BerlinGoogle Scholar
  38. Kojadinovic J, Bustamante P, Churlaud C et al (2007) Mercury in seabird feathers: insight on dietary habits and evidence for exposure levels in the western Indian Ocean. Sci Total Environ 384:194–204. doi: 10.1016/j.scitotenv.2007.05.018 PubMedCrossRefGoogle Scholar
  39. Lescroël A, Bost CA (2005) Foraging under contrasting oceanographic conditions: the gentoo penguin at Kerguelen Archipelago. Mar Ecol Prog Ser 302:245–261. doi: 10.3354/meps302245 CrossRefGoogle Scholar
  40. Lescroël A, Ridoux V, Bost CA (2004) Spatial and temporal variation in the diet of the gentoo penguin (Pygoscelis papua) at Kerguelen Islands. Polar Biol 27:206–216. doi: 10.1007/s00300-003-0571-3 CrossRefGoogle Scholar
  41. Lescroël A, Bajzak C, Bost CA (2009) Breeding ecology of the gentoo penguin Pygoscelis papua at Kerguelen Archipelago. Polar Biol 32:1495–1505. doi: 10.1007/s00300-009-0647-9 CrossRefGoogle Scholar
  42. Mão de Ferro A, Mota AM, Canário J (2014) Pathways and speciation of mercury in the environmental compartments of Deception Island, Antarctica. Chemosphere 95:227–233. doi: 10.1016/j.chemosphere.2013.08.081 PubMedCrossRefGoogle Scholar
  43. Metcheva R, Yurukova L, Teodorova S, Nikolova E (2006) The penguin feathers as bioindicator of Antarctica environmental state. Sci Total Environ 362:259–265. doi: 10.1016/j.scitotenv.2005.05.008 PubMedCrossRefGoogle Scholar
  44. Metcheva R, Yurukova L, Teodorova SE (2011) Biogenic and toxic elements in feathers, eggs, and excreta of Gentoo penguin (Pygoscelis papua ellsworthii) in the Antarctic. Environ Monit Assess 182:571–585. doi: 10.1007/s10661-011-1898-9 PubMedCrossRefGoogle Scholar
  45. Monteiro LR, Furness RW (1995) Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut 54:851–870CrossRefGoogle Scholar
  46. Nygård T, Lie E, Røv N, Steinnes E (2001) Metal dynamics in an Antarctic food chain. Mar Pollut Bull 42:598–602PubMedCrossRefGoogle Scholar
  47. Phillips RA, McGill RAR, Dawson DA, Bearhop S (2011) Sexual segregation in distribution, diet and trophic level of seabirds: insights from stable isotope analysis. Mar Biol 158:2199–2208. doi: 10.1007/s00227-011-1725-4 CrossRefGoogle Scholar
  48. Pinheiro J, Bates D, DebRoy S, et al (2013) nlme: linear and nonlinear mixed effects models. R Packag. version 3, pp 1-113. http://cran.r-project.org/web/packages/nlme/index.html. Accessed 15 Nov 2014
  49. Polito MJ, Trivelpiece WZ, Karnovsky NJ et al (2011) Integrating stomach content and stable isotope analyses to quantify the diets of pygoscelid penguins. PLoS One. doi: 10.1371/journal.pone.0026642 Google Scholar
  50. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for statistical computing. http://web.mit.edu/r/r_v3.0.1/fullrefman.pdf. Accessed 3 Dec 2013
  51. Ramos R, González-Solís J (2012) Trace me if you can: the use of intrinsic biogeochemical markers in marine top predators. Front Ecol Environ 10:258–266. doi: 10.1890/110140 CrossRefGoogle Scholar
  52. Ratcliffe N, Trathan P (2011) A review of the diet and at-sea distribution of penguins breeding within the CAMLR convention area. CCAMLR Sci 18:75–114Google Scholar
  53. Robinson SA, Lajeunesse MJ, Forbes MR (2012) Sex differences in mercury contamination of birds: testing multiple hypotheses with meta-analysis. Environ Sci Technol 46:7094–7101. doi: 10.1021/es204032m PubMedCrossRefGoogle Scholar
  54. Santos I, Silva-filho E, Schaefer C et al (2006) Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ Pollut 140:304–311. doi: 10.1016/j.envpol.2005.07.007 PubMedCrossRefGoogle Scholar
  55. Scheuhammer A, Braune B, Chan HM et al (2015) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ 509–510:91–103. doi: 10.1016/j.scitotenv.2014.05.142 PubMedCrossRefGoogle Scholar
  56. Stewart F, Phillips R, Bartle J et al (1999) Influence of phylogeny, diet, moult schedule and sex on heavy metal concentrations in New Zealand Procellariiformes. Mar Ecol Prog Ser 178:295–305CrossRefGoogle Scholar
  57. Streets D, Zhang Q, Wu Y (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43:2983–2988PubMedCrossRefGoogle Scholar
  58. Tanton JL, Reid K, Croxall JP, Trathan PN (2004) Winter distribution and behaviour of gentoo penguins Pygoscelis papua at South Georgia. Polar Biol 27:299–303. doi: 10.1007/s00300-004-0592-6 CrossRefGoogle Scholar
  59. Tavares S, Xavier JC, Phillips RA et al (2013) Influence of age, sex and breeding status on mercury accumulation patterns in the wandering albatross Diomedea exulans. Environ Pollut 181:315–320. doi: 10.1016/j.envpol.2013.06.032 PubMedCrossRefGoogle Scholar
  60. Thompson DR, Furness RW, Lewis SA (1993) Temporal and spatial variation in mercury concentrations in some albatrosses and petrels from the sub-Antarctic. Polar Biol 13:239–244CrossRefGoogle Scholar
  61. Trathan PN, García-Borboroglu P, Boersma D et al (2014) Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conserv Biol 29:31–41. doi: 10.1111/cobi.12349 PubMedCrossRefGoogle Scholar
  62. UNEP (2013) Global Mercury Assessment 2013: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, GenevaGoogle Scholar
  63. Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for {PCR}—based typing from forensic material. Biotechniques 10:506–513. doi: 10.2144/000113897 PubMedGoogle Scholar
  64. Wilson RP (1984) An improved stomach pump for penguins and other seabirds. J Field Ornithol 55:109–111. doi: 10.2307/4512864 Google Scholar
  65. Winder VL, Michaelis AK, Emslie SD (2012) Understanding associations between nitrogen and carbon isotopes and mercury in three Ammodramus sparrows. Sci Total Environ 419:54–59. doi: 10.1016/j.scitotenv.2012.01.003 PubMedCrossRefGoogle Scholar
  66. Xavier JC, Croxall JP, Reid K (2003) Interannual variation in the diets of two albatross species breeding at South Georgia: implications for breeding performance. Ibis 145:593–610. doi: 10.1046/j.1474-919X.2003.00196.x CrossRefGoogle Scholar
  67. Zuur A, Ieno E, Smith G (2007) Analysing ecological data. doi: 10.1007/978-0-387-45972-1

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sara Pedro
    • 1
    Email author
  • José C. Xavier
    • 2
    • 3
  • Sílvia Tavares
    • 1
  • Phil N. Trathan
    • 3
  • Norman Ratcliffe
    • 3
  • Vitor H. Paiva
    • 2
  • Renata Medeiros
    • 4
  • Rui P. Vieira
    • 2
    • 6
    • 7
  • Filipe R. Ceia
    • 2
  • Eduarda Pereira
    • 5
  • Miguel A. Pardal
    • 1
  1. 1.Department of Life Sciences, Centre of Functional EcologyUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Life Sciences, Marine and Environmental Sciences Centre (MARE)University of CoimbraCoimbraPortugal
  3. 3.British Antarctic SurveyNERCCambridgeUK
  4. 4.Cardiff School of BiosciencesCardiff UniversityCardiff, South GlamorganWales, UK
  5. 5.Department of Chemistry, Centre for Environmental and Marine Studies (CESAM)University of AveiroAveiroPortugal
  6. 6.Department of BiologyUniversity of AveiroAveiroPortugal
  7. 7.Ocean and Earth ScienceNational Oceanography Centre, SouthamptonSouthamptonUK

Personalised recommendations