Advertisement

Polar Biology

, Volume 38, Issue 8, pp 1223–1237 | Cite as

The phylogenetic position and taxonomic status of Sterechinus bernasconiae Larrain, 1975 (Echinodermata, Echinoidea), an enigmatic Chilean sea urchin

  • Thomas SaucèdeEmail author
  • Angie Díaz
  • Benjamin Pierrat
  • Javier Sellanes
  • Bruno David
  • Jean-Pierre Féral
  • Elie Poulin
Original Paper

Abstract

Sterechinus is a very common echinoid genus in benthic communities of the Southern Ocean. It is widely distributed across the Antarctic and South Atlantic Oceans and has been the most frequently collected and intensively studied Antarctic echinoid. Despite the abundant literature devoted to Sterechinus, few studies have questioned the systematics of the genus. Sterechinus bernasconiae is the only species of Sterechinus reported from the Pacific Ocean and is only known from the few specimens of the original material. Based on new material collected during the oceanographic cruise INSPIRE on board the R/V Melville, the taxonomy and phylogenetic position of the species are revised. Molecular and morphological analyses show that S. bernasconiae is a subjective junior synonym of Gracilechinus multidentatus (Clark). Results also show the existence of two genetically distinct subclades within the so-called Sterechinus clade: a Sterechinus neumayeri subclade and a subclade composed of other Sterechinus species. The three nominal species Sterechinus antarcticus, Sterechinus diadema, and Sterechinus agassizi cluster together and cannot be distinguished. The species Sterechinus dentifer is weakly differentiated from these three nominal species. The elucidation of phylogenetic relationships between G. multidentatus and species of Sterechinus also allows for clarification of respective biogeographic distributions and emphasizes the putative role played by biotic exclusion in the spatial distribution of species.

Keywords

Sterechinus bernasconiae Gracilechinus multidentatus Echinoidea Antarctic Phylogeny Biogeography 

Notes

Acknowledgments

Samples were collected during oceanographic campaigns through IPEV (formerly IFRTP) programmes No. 195 BENTHOS-MAC, No. 345 BENTHADEL, and No. 1044 PROTEKER; Chilean programmes INACH 13-05, INACH 02-02, INACH B01-07, ECOS C06B02, and INIDEP 1608; and oceanographic cruises INSPIRE, Antarktis XXIII/8, CEAMARC, CHESSO, BIOPEARL I, and Bentart’06. The authors are indebted to the staff of the Marine Research Station of Las Cruces (Chile), CBUCN (Biological Collection of Universidad Católica del Norte, Coquimbo, Chile), ZMUC (Concepción, Chile), NIWA (Wellington, New Zealand), BAS (Cambridge, UK), and AWI (Bremerhaven, Germany). This study was supported by the European Community through an ASSEMBLE Grant (Grant No. 22779). This is Contribution No. 4 to the vERSO project (www.versoproject.be), funded by the Belgian Science Policy Office (BELSPO, Contract No. BR/132/A1/vERSO). This is a contribution to team BioME of the CNRS laboratory Biogéosciences (UMR 6282).

References

  1. Acha E, Mianzan H, Guerrero R, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America. J Mar Syst 44:83–105CrossRefGoogle Scholar
  2. Agassiz A (1869) Preliminary reports on the Echini and star-fishes dredged in deep water between Cuba and the Florida reef by L.F. de Pourtales. Assist. U.S. Coast Survey. Bull Mus Comp Zool Harvard 1:253–308Google Scholar
  3. Agassiz A (1881) Report on the Echinoidea dredged by H.M.S. Challenger 1873–1876. Report on the scientific results of the voyage of H.M.S. Challenger 3. Her Majesty’s Stationery Office, LondonGoogle Scholar
  4. Arnaud PM, Lopez CM, Olaso I, Ramil F, Ramos-Espla AA, Ramos A (1998) Semi-quantitative study of macrobenthic fauna in the region of the South Shetland Islands and the Antarctic Peninsula. Polar Biol 19:160–166CrossRefGoogle Scholar
  5. Barnes DKA, Brockington S (2003) Zoobenthic biodiversity, biomass and abundance at Adelaide Island, Antarctica. Mar Ecol Prog Ser 249:145–155CrossRefGoogle Scholar
  6. Beu AG, Griffin M, Maxwell PA (1997) Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281:83–97Google Scholar
  7. Brandt A, Gooday AJ, Brandao SN, Brix S, Brokeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe JA, Janussen D, Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach M, Vanreusel A (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307–311PubMedCrossRefGoogle Scholar
  8. Brey T, Gutt J (1991) The genus Sterechinus (Echinodermata, Echinoidea) on the Weddell Sea shelf and slope (Antarctica)—distribution, abundance and biomass. Polar Biol 11:227–232CrossRefGoogle Scholar
  9. Clark HL (1925) A catalogue of the recent sea-urchins (Echinoidea) in the collection of the British Museum (Natural History). Br Mus (Natural History), LondonGoogle Scholar
  10. David B, Choné T, Mooi R, De Ridder C (2005) Antarctic Echinoidea. Synopses of the Antarctic Benthos. Koeltz Scientific Books, KönigsteinGoogle Scholar
  11. Del Rio CJ (2002) Moluscos del Terciario Marino. In: Haller MJ (ed) Geología y Recursos Naturales de Santa Cruz, vol 2. XV Congreso Geológico Argentino, El Calafate, pp 1–22Google Scholar
  12. Díaz A, Féral JP, David B, Saucède T, Poulin E (2011) Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep Sea Res PT II 58:205–211CrossRefGoogle Scholar
  13. Döderlein L (1906) Die Echinoiden der deutschen Tiefsee-Expedition. Deutsche Tiefsee Expedition 1898–1899 5:63–290Google Scholar
  14. Fell HB, Pawson DL (1966) Echinacea. In: Moore RC (ed) A treatise on invertebrate paleontology. Part U Echinodermata 3. Asterozoa-Echinozoa. University of Kansas Press and the Geological Society of America, BoulderGoogle Scholar
  15. Felsenstein J (1981) Related articles, links evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  16. Filatov DA (2009) Processing and population genetic analysis of multigenic datasets with ProSeq3 software. Bioinformatics 25(23):3189–3190PubMedCentralPubMedCrossRefGoogle Scholar
  17. Foster RJ, Philip GM (1978) Tertiary holasteroid echinoids from Asutralia and new Zealand. Palaeontology 21:791–822Google Scholar
  18. González-Wevar CA, Díaz A, Gerard K, Cañete JI, Poulin E (2012a) Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates. Revista Chilena de Historia Natural 85:445–456CrossRefGoogle Scholar
  19. González-Wevar CA, Hüne M, Cañete JI, Mansilla A, Nakano T, Poulin E (2012b) Towards a model of postglacial biogeography in shallow marine species along the Patagonian Province: lessons from the limpet Nacella magellanica (Gmelin, 1791). BMC Evol Biol 12:139. http://www.biomedcentral.com/1471-2148/12/139
  20. Gutt J, Zurell D, Bracegridle TJ, Cheung W, Clark MS, Convey P, Danis B, David B, De Broyer C, Prisco G di,Griffiths H, Laffont R, Peck LS, Pierrat B, Riddle MJ, Saucède T, Turner J, Verde C, Wang Z, Grimm V (2012) Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Res 31:11091. doi: 10.3402/polar.v31i0.11091
  21. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological Statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9Google Scholar
  22. Huelsenbeck JP, Ronquist F (2003) MRBAYES: Bayesian inference of phylogenetic trees. Version 3.0B4. http://mrbayes.csit.fsu.edu/
  23. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  24. Koehler R (1901) Résultats du voyage de S.Y. Belgica en 1897–1898–1899. Zoologie: échinides et ophiures. Buschmann, AnversGoogle Scholar
  25. Koehler R (1906) Echinodermes (Stellérides, ophiures et échinides). Expéditions Antarctiques Françaises 1903–1905Google Scholar
  26. Koehler R (1926) Echinodermata Echinoidea. In: Harrison L (ed) Australasian Antarctic expedition 1911–1914. Scientific Reports. Series C, Zoology and Botany, vol 8, pp 1–134Google Scholar
  27. Lamarck JBPA M de (1816) Histoire naturelle des animaux sans vertèbres. 3. Radiaires, Vers, Insectes (Echinides). Baillière, ParisGoogle Scholar
  28. Larrain A (1975) Los Equinoídeos regulares fósiles y recientes de Chile. Gayana Zool 35:1–189Google Scholar
  29. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum Antarctic region. Palaeogeogr Palaeoclimatol Palaeoecol 198:1137CrossRefGoogle Scholar
  30. Lee Y, Song M, Lee S, Leon R, Godoy S, Cañete I (2004) Molecular phylogeny and divergence time of the Antarctic sea urchin (Sterechinus neumayeri) in relation to the South American sea urchins. Antarct Sci 1:29–36CrossRefGoogle Scholar
  31. Linnæus C (1758) Systema Naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Salvius, HolmiæGoogle Scholar
  32. Linse K, Walker L, Barnes DKA (2008) Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica. Antarct Sci 20:227–244Google Scholar
  33. McKnight DG (1968) Additions to the echinoid fauna of New Zealand. N Z J Mar Fresh 2:90–110CrossRefGoogle Scholar
  34. Meissner M (1900) Echinoideen. In: Ergebnisse der Hamburger Magalhaensischen Sammelreise 1892/93, Band 1: Allgemeines, Chordonier, Echinodermen und Coelenteraten. Friederichsen, HamburgGoogle Scholar
  35. Miloslavich P, Klein E, Díaz J, Hernández C, Bigatti G, Campos L, Artigas F, Castillo J, Penchaszadeh P, Neill P, Carranza A, Retana M, Díaz de Astarloa J, Lewis M, Yorio P, Piriz M, Rodríguez D, Yoneshigue-Valentin Y, Gamboa L, Martín A (2011) Marine biodiversity in the Atlantic and Pacific Coasts of South America: knowledge and gaps. PLoS ONE 6:e14631PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mortensen T (1903) Echinoderms from East Greenland. Meddelelser om Gronland 29:65–89Google Scholar
  37. Mortensen T (1910) The Echinoidea of the Swedish South Polar Expedition. Schwedische Südpolar Expedition 1901–1903 6:1–114Google Scholar
  38. Mortensen T (1942) New Echinoidea (Camarodonta). Vidensk Medd Dansk Naturh Foren 106:225–232Google Scholar
  39. Mortensen T (1943) A monograph of the Echinoidea, vol. 3.3 Camarodonta II. Reitzel, CopenhagenGoogle Scholar
  40. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259Google Scholar
  41. Pierrat B, Saucède T, Laffont R, De Ridder C, Festeau A, David B (2012a) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Mar Ecol Prog Ser 463:215–230. doi: 10.3354/meps09842 CrossRefGoogle Scholar
  42. Pierrat B, Saucède T, Festeau A, David B (2012b) Antarctic, sub-Antarctic and cold temperate echinoid database. ZooKeys 204:47–52. doi: 10.3897/zookeys.204.3134 PubMedCrossRefGoogle Scholar
  43. Pierrat B, Saucède T, Brayard A, David B (2013) Comparative Biogeography of echinoids, bivalves, and gastropods from the Southern Ocean. J Biogeogr 40:1374–1385. doi: 10.1111/jbi.12088 CrossRefGoogle Scholar
  44. Posada D (2008) JModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  45. Puillandre N, Lambert A, Brouillet S, Achaz G (2012a) ABGD, Automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877PubMedCrossRefGoogle Scholar
  46. Puillandre N, Modica MV, Zhang Y et al (2012b) Large-scale species delimitation methods for hyperdiverse groups. Mol Ecol 21:2671–2691PubMedCrossRefGoogle Scholar
  47. Real L, Julio N, Gardenal N, Ciocco N (2004) Genetic variability of Tehuelche scallop, Aequipecten tehuelchus, populations from the Patagonian coasts (Argentina). J Mar Biol Assoc UK 2004(84):235–238CrossRefGoogle Scholar
  48. Saucède T, Pierrat B, Brayard A, David B (2013) Palaeobiogeography of Austral echinoid faunas: a first quantitative approach. In: Hambrey MJ, Barker PF, Barrett PJ, Bowman V, Davies B, Smellie JL, Tranter M, (eds) Antarctic Palaeoenvironments and Earth-Surface Processes, vol 381. Geological Society, London, Special Publications, pp 117–127. doi: 10.1144/SP318.6
  49. Saucède T, Pierrat B, David B (2014) Chapter 5.26. Echinoids. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz C d’ et al (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 213–220Google Scholar
  50. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771CrossRefGoogle Scholar
  51. Studer T (1876) Über Echinodermen aus Antarkischen Meere und zwei neue seeigel von Papoua-Inseln, gesammelt auf der Reise S.M.S. Gazelle um die Erde. Monats Königl Akad Wiss Berlin 452–465Google Scholar
  52. Studer T (1880) Gazelle-Echinoidea. Monatsber Akad Berlin 1880:861–885Google Scholar
  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralPubMedCrossRefGoogle Scholar
  54. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  55. Zapata-Hernández G, Sellanes Thurber AR, Levin LA, Chazalon F, Linke P (2014) New insights on the trophic ecology of bathyal communities from the methane seep area off Concepción, Chile (~36° S). Mar Ecol 35:1–21. doi: 10.1111/maec.12051 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Thomas Saucède
    • 1
    Email author
  • Angie Díaz
    • 2
    • 3
  • Benjamin Pierrat
    • 1
  • Javier Sellanes
    • 4
  • Bruno David
    • 1
  • Jean-Pierre Féral
    • 5
  • Elie Poulin
    • 3
  1. 1.UMR CNRS 6282 BiogéosciencesUniversité de BourgogneDijonFrance
  2. 2.Laboratorio de Macroalgas Antárticas y Subantárticas, Departamento de Ciencias y Recursos Naturales, Facultad de CienciasUniversidad de MagallanesPunta ArenasChile
  3. 3.Departamento de Ciencias Ecológicas, Facultad de Ciencias, Instituto de Ecología y BiodiversidadUniversidad de ChileSantiagoChile
  4. 4.Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  5. 5.UMR 7263 Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentaleAix Marseille Université-CNR-IRD-Avignon UniversitéMarseilleFrance

Personalised recommendations