Polar Biology

, Volume 38, Issue 8, pp 1195–1202 | Cite as

From sea ice to blubber: linking whale condition to krill abundance using historical whaling records

  • Janelle E. Braithwaite
  • Jessica J. Meeuwig
  • Tom B. Letessier
  • K. Curt S. Jenner
  • Andrew S. Brierley
Original Paper


Krill (Euphausia superba) are fundamentally important in the Southern Ocean ecosystem, forming a critical food web link between primary producers and top predators. Krill abundance fluctuates with oceanographic conditions, most notably variation in winter sea ice, and is susceptible to environmental change. Although links between local krill availability and performance of land breeding, central place foragers are recognised, the effects of krill variability on baleen whales remain largely unclear because concurrent long-term data on whale condition and krill abundance do not exist. Here, we quantify links between whale body condition and krill abundance using a simple model that links krill abundance to sea ice extent. Body condition of humpback whales (Megaptera novaeangliae) caught in west Australian waters between 1947 and 1963 was estimated from oil yields in whaling records. Annual estimates of krill abundance in the Southern Ocean where those whales foraged (70°–130°E) were correlated significantly with contemporary annual winter sea ice extent. We hindcast sea ice extent for the whaling period from reconstructed temperature data and found that whale body condition was significantly correlated with hindcasted winter sea ice extent, supporting the hypothesis that variations in body condition were likely mediated by associated krill fluctuations. As humpback whales migrate and breed on finite energy stores accrued during summer foraging in the Antarctic, changes in sea ice and concomitant changes in krill abundance have long-term implications for their condition and reproductive success.


Euphausia superba Humpback whale Megaptera novaeangliae Sea ice dynamics Energetics Migration 



We thank the numerous contributors to the KRILLBASE database and to Angus Atkinson, Volker Siegel, and Evgeny Pakhomov for making these data available to us via the ICED website. We also thank Cherry Allison at the International Whaling Commission for providing the historical whaling database, and Jan Erik Ringstad and Dag Ingemar Børresen at the Whaling Museum, Norway, for insight into whaling history and culture. JE Braithwaite thanks the University of Western Australia for providing a PhD scholarship.

Supplementary material

300_2015_1685_MOESM1_ESM.docx (124 kb)
Supplementary material 1 (DOCX 123 kb)


  1. Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103. doi: 10.1038/nature02996 PubMedCrossRefGoogle Scholar
  2. Atkinson A, Siegel V, Pakhomov EA et al (2008) Oceanic circumpolar habitats of Antarctic krill. Mar Ecol Prog Ser 362:1–23CrossRefGoogle Scholar
  3. Brierley AS, Fernandes PG, Brandon MA et al (2002) Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science 295:1890–1892. doi: 10.1126/science.1068574 PubMedCrossRefGoogle Scholar
  4. Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76:2028–2043. doi: 10.2307/1941678 CrossRefGoogle Scholar
  5. Cavalieri JD, Parkinson CL, Gloersen P, Zwally H (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data. NASA DAAC at the National Snow and Ice Data Center, BoulderGoogle Scholar
  6. Chittleborough RG (1965) Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar Freshw Res 16:33–128. doi: 10.1071/MF9650033 CrossRefGoogle Scholar
  7. Clapham PJ, Brownell RL Jr (1996) The potential for interspecific competition in baleen whales. Report to the International Whaling Commission SC/47/SH27 46:361–367Google Scholar
  8. Constantine R, Steel D, Allen J et al (2014) Remote Antarctic feeding ground important for east Australian humpback whales. Mar Biol 161:1087–1093. doi: 10.1007/s00227-014-2401-2 CrossRefGoogle Scholar
  9. Croxall JP, Reid K, Prince PA (1999) Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar Ecol Prog Ser 177:115–131. doi: 10.3354/meps177115 CrossRefGoogle Scholar
  10. Dawbin WH (1966) The seasonal migratory cycle of humpback whales. In: Norris KS (ed) Whales dolphins and porpoises. University of California Press, Berkley, pp 145–170Google Scholar
  11. de la Mare W (1999) Southernmost whale catch positions. Australian Antarctic Data Centre—CAASM metadata.
  12. de la Mare W (2008) Changes in Antarctic sea-ice extent from direct historical observations and whaling records. Clim Change 92:461–493. doi: 10.1007/s10584-008-9473-2 CrossRefGoogle Scholar
  13. Donovan GP (1991) A review of IWC stock boundaries. Report of the International Whaling Commission (Special Issue 13):36–68Google Scholar
  14. Fielding S, Watkins JL, Trathan PN et al (2014) Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J Mar Sci. doi: 10.1093/icesjms/fsu104 Google Scholar
  15. Flores H, Atkinson A, Kawaguchi S et al (2012a) Impact of climate change on Antarctic krill. Mar Ecol Prog Ser 458:1–19. doi: 10.3354/meps09831 CrossRefGoogle Scholar
  16. Flores H, van Franeker JA, Siegel V et al (2012b) The association of Antarctic krill Euphausia superba with the under-ice habitat. PLoS ONE 7:e31775. doi: 10.1371/journal.pone.0031775 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fraser WR, Trivelpiece WZ, Ainley D, Trivelpiece SG (1992) Increases in Antarctic penguin populations: reduced competition with whales or a loss of sea ice due to environmental warming? Polar Biol 11:525–531. doi: 10.1007/BF00237945 CrossRefGoogle Scholar
  18. Friedlaender AS, Lawson GL, Halpin PN (2006) Evidence of resource partitioning and niche separation between humpback and minke whales in Antarctica: implications for interspecific competition. International whaling commission scientific committee document SC/58/E32Google Scholar
  19. Gaston KJ, McArdle BH (1994) The temporal variability of animal abundances: measures, methods and patterns. Philos Trans R Soc B Biol Sci 345:335–358. doi: 10.1098/rstb.1994.0114 CrossRefGoogle Scholar
  20. Harrison XA, Blount JD, Inger R et al (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18. doi: 10.1111/j.1365-2656.2010.01740.x PubMedCrossRefGoogle Scholar
  21. Hewitt R (2003) An 8-year cycle in krill biomass density inferred from acoustic surveys conducted in the vicinity of the South Shetland Islands during the austral summers of 1991–1992 through 2001–2002. Aquat Living Resour 16:205–213. doi: 10.1016/S0990-7440(03)00019-6 CrossRefGoogle Scholar
  22. Holyoake C, Stephens N, Coughran D (2012) Collection of baseline data on humpback whale (Megaptera novaeangliae) health and causes of mortality for long-term monitoring in Western Australia. Advisory report delivered to the Western Australian Marine Science Institution (WAMSI)Google Scholar
  23. Lawler IR, Parra G, Noad M (2007) Vulnerability of marine mammals in the Great Barrier Reef to climate change. In: Johnson JE, Marshall PA (eds) Climate change and the great barrier reef: a vulnerability assessment. The Great Barrier Reef Marine Park Authority, Townsville, pp 497–513Google Scholar
  24. Leaper R, Cooke J, Trathan P et al (2006) Global climate drives southern right whale (Eubalaena australis) population dynamics. Biol Lett 2:289–292. doi: 10.1098/rsbl.2005.0431 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lockyer C (1976) Body weights of some species of large whales. ICES J Mar Sci 36:259–273CrossRefGoogle Scholar
  26. Lockyer C (1981) Growth and energy budgets of large baleen whales from the Southern Hemisphere. Mammals in the Seas. FAO, Rome, pp 379–487Google Scholar
  27. Lockyer C (1986) Body-fat condition in northeast atlantic fin whales, Balaenoptera physalus, and its relationship with reproduction and food resource. Can J Fish Aquat Sci 43:142–147CrossRefGoogle Scholar
  28. Loeb V, Siegel V, Holm-Hansen O et al (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900CrossRefGoogle Scholar
  29. Massom R, Reid P, Stammerjohn S et al (2013) Change and variability in east antarctic sea ice seasonality, 1979/80–2009/10. PLoS ONE 8:e64756PubMedCentralPubMedCrossRefGoogle Scholar
  30. Nicol S (2006) Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56:111. doi:10.1641/0006-3568(2006)056[0111:KCASIE]2.0.CO;2CrossRefGoogle Scholar
  31. Nicol S, Pauly T, Bindoff NL et al (2000) Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature 406:504–507PubMedCrossRefGoogle Scholar
  32. Nicol S, Worby A, Leaper R (2008) Changes in the Antarctic sea ice ecosystem: potential effects on krill and baleen whales. Mar Freshw Res 59:361. doi: 10.1071/MF07161 CrossRefGoogle Scholar
  33. NOAA (2007) Extended Reconstructed Sea Surface Temperature (ERSST.v3b). Data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. http://www.esrlnoaagov/psd/
  34. Noad MJ, Cato DH, Bryden MM et al (2000) Cultural revolution in whale songs. Nature 408:537. doi: 10.1038/35046199 PubMedCrossRefGoogle Scholar
  35. O’Brien C, Virtue P, Kawaguchi S, Nichols PD (2011) Aspects of krill growth and condition during late winter-early spring off East Antarctica (110–130°E). Deep Sea Res Part II Top Stud Oceanogr 58:1211–1221. doi: 10.1016/j.dsr2.2010.11.001 CrossRefGoogle Scholar
  36. Pauly T, Nicol S, Higginbottom I et al (2000) Distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (80–150°E) during the Austral summer of 1995/1996. Deep Sea Res Part II Top Stud Oceanogr 47:2465–2488. doi: 10.1016/S0967-0645(00)00032-1 CrossRefGoogle Scholar
  37. Quetin LB, Ross RM (2001) Environmental variability and its impact on the reproductive cycle of Antarctic krill. Am Zool 41(1):74–89. doi: 10.1093/icb/41.1.74
  38. Quetin LB, Ross RM, Fritsen CH (2007) Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarct Sci 19:253–266CrossRefGoogle Scholar
  39. Raymond B (2009) The maximum extent of sea ice in the southern hemisphere by day and by winter season. Australian Antarctic Data Centre—CAASM Metadata.
  40. Reid K, Croxall JP, Briggs DR, Murphy EJ (2005) Antarctic ecosystem monitoring: quantifying the response of ecosystem indicators to variability in Antarctic krill. ICES J Mar Sci 62:366–373. doi: 10.1016/j.icesjms.2004.11.003 CrossRefGoogle Scholar
  41. Santora JA, Schroeder ID, Loeb VJ (2014) Spatial assessment of fin whale hotspots and their association with krill within an important Antarctic feeding and fishing ground. Mar Biol 161:2293–2305. doi: 10.1007/s00227-014-2506-7 CrossRefGoogle Scholar
  42. Siegel V, Loeb V (1995) Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Mar Ecol Prog Ser 123:45–56. doi: 10.3354/meps123045 CrossRefGoogle Scholar
  43. Stroeve J, Holland MM, Meier W et al (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi: 10.1029/2007GL029703
  44. Tønnessen JN, Johnsen AO (1982) The history of modern whaling. University of California Press, BerkeleyGoogle Scholar
  45. Visser F, Hartman KL, Pierce GJ et al (2011) Timing of migratory baleen whales at the Azores in relation to the North Atlantic spring bloom. Mar Ecol Prog Ser 440:267–279CrossRefGoogle Scholar
  46. Williams R, Víkingsson GA, Gislason A et al (2013) Evidence for density-dependent changes in body condition and pregnancy rate of North Atlantic fin whales over four decades of varying environmental conditions. ICES J Mar Sci 70:1273–1280. doi: 10.1093/icesjms/fst059 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Janelle E. Braithwaite
    • 1
  • Jessica J. Meeuwig
    • 1
    • 2
  • Tom B. Letessier
    • 2
  • K. Curt S. Jenner
    • 3
  • Andrew S. Brierley
    • 4
  1. 1.School of Animal Biology (UWA Oceans Institute), Faculty of ScienceUniversity of Western AustraliaCrawleyAustralia
  2. 2.The Centre for Marine Futures (UWA Oceans Institute), Faculty of ScienceUniversity of Western AustraliaCrawleyAustralia
  3. 3.Centre for Whale ResearchFremantleAustralia
  4. 4.Pelagic Ecology Research Group, Scottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK

Personalised recommendations