Advertisement

Polar Biology

, Volume 39, Issue 1, pp 123–137 | Cite as

Micro- and mesozooplankton responses during two contrasting summers in a coastal Antarctic environment

  • Maximiliano D. GarciaEmail author
  • Mónica S. Hoffmeyer
  • María Celeste López Abbate
  • María Sonia Barría de Cao
  • Rosa E. Pettigrosso
  • Gastón O. Almandoz
  • Marcelo P. Hernando
  • Irene R. Schloss
Article

Abstract

Rapid climate-driven melting of coastal glaciers may control plankton dynamics in the Western Antarctic Peninsula. It is known that in Potter Cove, 25 de Mayo/King George Island, phytoplankton is tightly coupled to meltwater input. However, no information on zooplankton is available in this regard. The aim of this study was therefore to examine the structure and dynamics of microzooplankton and mesozooplankton in two zones (the inner and outer Potter Cove) differently impacted by glacier melting during two contrasting austral summers (2010 and 2011). Microzooplankton composition differed between the two zones and years analyzed, and its total biomass was observed to be highest far from the glacier influence and during 2010. Mesozooplankton composition and biomass were similar in the two zones and years analyzed. Colder than usual conditions in the summer of 2010 prevented glacier melting, thus favoring the development of an exceptional micro-sized diatom bloom (~190 µg C l−1 and >15 µg l−1 chlorophyll a), which was tightly followed by a maximum in large copepod abundance. After the bloom and in coincidence with intense glacier melting, large diatoms and large copepods were observed to be replaced by nanophytoplankton and microzooplankton (aloricate ciliates and dinoflagellates), respectively. In 2011, low phytoplankton abundance, probably controlled by high tintinnid biomass, was observed as a result of warmer temperatures than 2010 and low-salinity waters. Large copepods appeared to have exerted a high grazing pressure on aloricate ciliates and heterotrophic dinoflagellates in 2011. Our results suggest that whereas the joint effect of water temperature, salinity and phytoplankton availability as well as composition could be of primary relevance in structuring micro- and mesozooplankton community, zooplankton could be of secondary relevance in controlling phytoplankton biomass in Potter Cove during the two summers analyzed.

Keywords

Western Antarctic Peninsula Microzooplankton Mesozooplankton Biomass Top-down/bottom-up 

Notes

Acknowledgments

This study was supported by PICTO (Proyecto de Investigación Científica y Tecnológica Orientados) 35562 and PICT (Proyecto de Investigación Científica y Tecnológica) 2011 1320 to I.R.S. It is also part of the Interdisciplinary Modelling of Climate Change in Coastal Western Antarctica—Network for Staff Exchange and Training (IMCONET; FP7-PEOPLE-2012-IRSES) supported by the European Polar Consortium–European Research Area–Net of Jubany. Authors want to particularly thank the personal members of Jubany (Carlini) Base and Dallmann Laboratory during 2010 and 2011 periods. Authors are also grateful to two anonymous reviewers of this manuscript for their valuable suggestions and to translator Viviana Soler who kindly improved the English style of the last version of this manuscript.

Supplementary material

300_2015_1678_MOESM1_ESM.tif (77 kb)
Supplementary material 1 (TIFF 77 kb)
300_2015_1678_MOESM2_ESM.docx (37 kb)
Supplementary material 2 (DOCX 37 kb)

References

  1. Alder VA, Boltovskoy D (1991) The ecology and biogeography of tintinnid ciliates in the Atlantic sector of the Southern Ocean. Mar Chem 35:337–346CrossRefGoogle Scholar
  2. Almandoz GO, Hernando MP, Ferreyra GA, Schloss IR, Ferrario ME (2011) Seasonal phytoplankton dynamics in extreme southern South America (Beagle Channel, Argentina). J Sea Res 66:47–57CrossRefGoogle Scholar
  3. Almeda R, Messmer AM, Sampedro N, Gosselin LA (2011) Feeding rates and abundance of marine invertebrate planktonic larvae under harmful algal bloom conditions off Vancouver Island. Harmful Algae 10:194–206CrossRefGoogle Scholar
  4. Atkinson A, Ward P, Murphy EJ (1996) Die1 periodicity of subantarctic copepods: relationships between vertical migration, gut fullness and gut evacuation rate. J Plankton Res 18:1387–1405CrossRefGoogle Scholar
  5. Baldwin BS, Newell IE (1991) Omnivorous feeding by planktotrophic larvae of the eastern oyster Crassostrea virginica. Mar Ecol Prog Ser 78:285–301CrossRefGoogle Scholar
  6. Balech E (1976) Clave ilustrada de dinoflagelados Antárcticos. Instituto Antártico Argentino, Buenos Aires, p 99Google Scholar
  7. Banse K (1995) Zooplankton: pivotal role in the control of ocean production. ICES J Mar Sci 52:3–4CrossRefGoogle Scholar
  8. Barría de Cao MS (1987) Tintinnia (Protozoa, Ciliata) de la zona Antarctica Argentina. (Tintinnids (Protozoa, Ciliata) of the Argentine Antarctic zone). In: Primer Symposium Espanol de EstudiosAntarcticos. (First Spanish symposium on Antarctic studies.) Spain in the Antarctic Society, High Council for Scientific Research, Madrid, pp 275–284Google Scholar
  9. Berggreen U, Hansen B, Kiorboe T (1988) Food size spectra, ingestion and growth of the copepod during development: implications for determination of copepod production. Mar Biol 99:341–352CrossRefGoogle Scholar
  10. Bers VA, Momo F, Schloss IR, Abele D (2013) Analysis of trends and sudden changes in long-term environmental data from King George Island (Antarctica): relationships between global climatic oscillations and local system response. Clim Change 116:789–803. doi: 10.1007/s10584-012-0523-4 CrossRefGoogle Scholar
  11. Boysen-Ennen E, Piatkowski U (1988) Meso- and Macro-zooplankton communities in the Weddell Sea, Antarctica. Polar Biol 9:17–35CrossRefGoogle Scholar
  12. Broglio E, Saiz E, Calbet A, Trepat I, Alcaraz M (2004) Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat Microb Ecol 35:65–78CrossRefGoogle Scholar
  13. Calbet A (2008) The trophic roles of microzooplankton in marine systems. ICES J Mar Sci 65:325–331CrossRefGoogle Scholar
  14. Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57CrossRefGoogle Scholar
  15. Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38:157–167CrossRefGoogle Scholar
  16. Cushing DH (1989) A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J Plankton Res 11(1):1–13CrossRefGoogle Scholar
  17. Dominguez C, Eraso A (2007) Substantial changes happened during the last years in the icecap of King George, Insular Antarctica. In: Tyk A, Stefaniak K (eds) Karst and Cryokarst. Studies of the Faculty of Earth Sciences, vol 45. University of Silesia, Poland, pp 87–110Google Scholar
  18. Ducklow HW, Fraser W, Karl DM, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Daniels RM (2006) Water-column processes in the West Antarctic Peninsula and the Ross Sea: interannual variations and food web structure. Deep Sea Res II 53:834–852CrossRefGoogle Scholar
  19. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the west Antarctic Peninsula. Philos Trans R Soc B 362:67–94CrossRefGoogle Scholar
  20. Elwers K, Dahms HU (1998) Species composition and seasonal population structure of Oithona similis (Copepoda, Cyclopoida). In: Wiencke C, Ferreyra G, Arntz W, Rinaldi C (eds) The Potter Cove ecosystem—Sinopsis, vol 299. Ber Polarforsch, Germany, pp 150–155Google Scholar
  21. Estrada M, Delgado M (1990) Summer phytoplankton distributions in the Weddell Sea. Polar Biol 10:441–449CrossRefGoogle Scholar
  22. Fenchel T, Finlay BJ (1983) Respiration rates in heterotrophic, free-living Protozoa. Microb Ecol 9:99–122CrossRefPubMedGoogle Scholar
  23. Ferrario ME, Sar EA, Sala S (1995) Metodología básica para el estudio del fitoplancton con especial referencia a las diatomeas. In: Alveal K, Ferrario ME, Oliveira EC, Sar EA (eds) Manual de Métodos Ficológicos. Universidad de Concepción, Chile, pp 1–23Google Scholar
  24. Fuentes V (2006) Estudio de la Comunidad Zooplanctónica de Caleta Potter y Bahía Guardia Nacional (Isla 25 de Mayo): su Rol en la Dinámica del Carbono en Zonas Costeras Antárticas. Tesis Doctoral. Universidad de Buenos Aires, p 249Google Scholar
  25. Fuentes VL, Hoffmeyer MS (2005) Abundance of Calanus propinquus and Calanoides acutus in an Antarctic coastal environment: comparing the inner and outer Potter Cove (King George Island, South Shetland Islands, Antarctica). In: Thatje S, Calcagno J, Wolf E, Arntz (eds) Evolution of Antarctic Fauna. Extended abstracts of the IBMANT/ANDEEP international symposium and workshop in 2003. Ber Polarforsch, Alemania, vol 507, pp 136–138Google Scholar
  26. Garibotti IA, Vernet M, Ferrario ME (2005) Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean). Deep Sea Res I Oceanogr Res Pap 52:1823–1841CrossRefGoogle Scholar
  27. González HE, Kurbjeweit FK, Bathmann UV (1994) Occurrence of cyclopoids and faecal material in Halley Bay region, Antarctica, during January–February 1991. Polar Biol 14:331–342CrossRefGoogle Scholar
  28. Haberman KL, Quetin LB, Ross RM (2003) Diet of the Antarctic krill (Euphausia superba Dana) II. Selective grazing on mixed phytoplankton assemblages. J Exp Mar Biol Ecol 283:97–113CrossRefGoogle Scholar
  29. Hansen B, Bjornsen PK, Hansen PJ (1994) The size ratio between planktonic predators and their prey. Limnol Oceanogr 39:395–403CrossRefGoogle Scholar
  30. Hasle GR (1978) Using the inverted microscope. In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, pp 191–196Google Scholar
  31. Ikeda T (1984) Development of the larvae of the Antarctic krill (Euphausia superba Dana) observed in the laboratory. J Exp Mar Biol Ecol 75:107–117CrossRefGoogle Scholar
  32. Ikeda T, Kirkwood R (1989) Metabolism and body composition of two euphausiids (Euphausia superba and E. crystallorophias) collected from under the pack-ice off Enderby Land, Antarctica. Mar Biol 100:301–308CrossRefGoogle Scholar
  33. Jeong HJ, Park JY, Nho JH, Park MO, Ha JH, Seong KA, Jeng C, Seong CN, Lee KY, Yih WH (2005) Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat Microb Ecol 41:131–143CrossRefGoogle Scholar
  34. Jonsson PR (1986) Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar Ecol Progr Ser 33:265–277CrossRefGoogle Scholar
  35. Joughin I, Alley RB (2011) Stability of the West Antarctic ice sheet in a warming world. Nat Geosci 4:506–513CrossRefGoogle Scholar
  36. Kang SH, Kang JS, Lee S, Chung KH, Kim D, Park MG (2001) Antarctic phytoplankton assemblages in the marginal ice zone of the northwestern Weddell Sea. J Plankton Res 23:333–352CrossRefGoogle Scholar
  37. Kattner G, Albers C, Graeve M, Schnack-Schiel SB (2003) Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol 26:666–671CrossRefGoogle Scholar
  38. Kaufmann RS, Fisherb EC, Gillb WH, Kingb AL, Laubacher M, Sullivan B (2003) Temporal patterns in the distribution, biomass and community structure of macrozooplankton and micronekton within Port Foster, Deception Island, Antarctica. Deep Sea Res II 50:1765–1785CrossRefGoogle Scholar
  39. Kiørboe T, Sabatini M (1995) Scaling of fecundity, growth and development in marine planktonic copepods. Mar Ecol Prog Ser 120:285–298CrossRefGoogle Scholar
  40. Klöser H (1990) Verteilung von Mikroplankton-Organismen nordwestlich der antarktischen Halbinsel unter dem Einfluss sich ändernder Umweltbedingungen im Herbst. Ber Polarforsch 77:1–255Google Scholar
  41. Kofoid CA, Campbell AS (1929) A conspectus of the marine and freshwater Ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the eastern tropical Pacific, 1904–1905. Univ Calif Publ Zool 34:1–403Google Scholar
  42. Leakey RJ, Burkill PH, Sleigh MA (1992) Planktonic ciliates in Southampton Water: abundance, biomass, productions and role in pelagic carbon flow. Mar Biol 114:67–83Google Scholar
  43. Liu H, Dagg MJ, Strom S (2005) Grazing by the calanoid copepod Neocalanus cristatus on the microbial food web in the coastal Gulf of Alaska. J Plankton Res 27:647–662CrossRefGoogle Scholar
  44. Lukáč D (2006) Community structure and predation impact of carnivorous macrozooplankton in the Polar Frontal Zone (Southern Ocean), with particular reference to chaetognaths. Thesis of Masters of Science at Rhodes University, p 113Google Scholar
  45. Mayzaud P, Tirelli V, Errhif A, Labat JP, Razouls S, Perissinotto R (2002) Carbon intake by zooplankton. Importance and role of zooplankton grazing in the Indian sector of the Southern Ocean. Deep Sea Res II 49:3169–3187CrossRefGoogle Scholar
  46. Miles BWJ, Stokes CR, Vieli A, Cox NJ (2013) Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature 500:563–566CrossRefPubMedGoogle Scholar
  47. Montagnes DJR, Lynn DH, Roff JC, Taylor WD (1988) The annual cycle of the heterotrophic planktonic ciliates in the waters surrounding the isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar Biol 99:21–30CrossRefGoogle Scholar
  48. Montes-Hugo M, Doney SC, Ducklow HW, Fraser WR, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1471–1473CrossRefGoogle Scholar
  49. Nejstgaard JC, Naustvoll LJ, Sazhin A (2001) Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Mar Ecol Prog Ser 221: 59–75Google Scholar
  50. Nielsen TG, Kiørboe T (1994) Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol Oceanogr 39:508–519CrossRefGoogle Scholar
  51. Omori M, Ikeda T (1984) Methods in zooplankton ecology. Wiley, New York, p 332Google Scholar
  52. Petz W, Song W, Wilbert N (1995) Taxonomy and ecology of the ciliate fauna (Protozoa, Ciliophora) in the endopagial and pelagial of the Weddell Sea, Antarctica. Stapfia 40:1–223Google Scholar
  53. Piquet AMT, Bolhuis H, Meredith MP, Buma AGJ (2011) Shifts in coastal Antarctic marine microbial communities during and after melt water related surface stratification. FEMS Microb Ecol 76(413–427):15Google Scholar
  54. Pond DW, Ward P (2011) Importance of diatoms for Oithona in Antarctic waters. J Plankton Res 33:105–118CrossRefGoogle Scholar
  55. Putland JN (2000) Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter. J Plankton Res 22:253–277CrossRefGoogle Scholar
  56. Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103CrossRefGoogle Scholar
  57. Quetin LB, Ross RM (2001) Environmental variability and its impact on the reproductive cycle of Antarctic krill. Am Zool 41:74–89Google Scholar
  58. Rose JM, Caron DA (2007) Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr 52:886–895CrossRefGoogle Scholar
  59. Rückamp M, Braun M, Suckro S, Blindow N (2011) Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob Planet Change 79:99–109. doi: 10.1016/j.gloplacha.2011.06.009 CrossRefGoogle Scholar
  60. Saiz E, Calbet A (2011) Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666:181–196CrossRefGoogle Scholar
  61. Schloss IR, Ferreyra GA (2002) Primary production, light and vertical mixing in potter cove, a shallow coastal Antarctic environment. Polar Biol 25:41–48Google Scholar
  62. Schloss IR, Ferreyra GA, Ruiz-Pino D (2002) Phytoplankton Biomass in Antarctic shelf zones: a conceptual model based on Potter Cove, King George Island. J Mar Syst 36:129–143CrossRefGoogle Scholar
  63. Schloss IR, Abele D, Moreau S, Demers S, Bers AV, González O, Ferreyra GA (2012) Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). J Mar Syst 92(1):53–66CrossRefGoogle Scholar
  64. Schloss IR, Wasilowska A, Dumont D, Almandoz GO, Hernando MP, Michaud-Tremblay CA, Saravia M, Rzepecki L, Monien P, Monien D, Kopczyńska EE, Bers AV, Ferreyra GA (2014) On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: an exceptional feature? Limnol Oceanogr 59(1):195–210CrossRefGoogle Scholar
  65. Schmoker C, Hernández-León S, Calbet A (2013) Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J Plankton Res 35(4):691–706. doi: 10.1093/plankt/fbt023 CrossRefGoogle Scholar
  66. Schnack S (1985) Feeding by Euphausia superba and copepod species in response to varying concentrations of phytoplankton. Antarctic nutrient cycles and food webs. Springer, Berlin, pp 311–323Google Scholar
  67. Sherr E, Sherr B (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar Ecol Prog Ser 352:187–197CrossRefGoogle Scholar
  68. Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263CrossRefGoogle Scholar
  69. Siegel V (1986) Untersuchungen zur Biologie des antarktischen Krill, Euphausia superba, im Bereich der Bransfield StraBe und angrenzender Gebiete. Mitt Inst Seefisch 38:1–244Google Scholar
  70. Smith RC, Baker KS, Dierssen HM, Stammerjohn SE, Vernet M (2001) Variability of primary production in an Antarctic marine ecosystem as estimated using a multi-scale sampling strategy. Am Zool 41:40–56Google Scholar
  71. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Co., New York, p 887Google Scholar
  72. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino–Southern Oscillation and Southern Annular Mode variability. J Geophys Res 113:C03S90. doi: 10.1029/2007JC004269 Google Scholar
  73. Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891–908CrossRefGoogle Scholar
  74. Strickland JDH, Parsons TR (1972) A practical handbook of sea-water analysis, 2nd edn. Bulletin of the Fisheries Research Board of Canada No. 167, p 1–310Google Scholar
  75. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294Google Scholar
  76. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38Google Scholar
  77. Valiela I (1995) Marine ecological processes. Springer, BerlinCrossRefGoogle Scholar
  78. Verity PG, Langdon C (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J Plankton Res 6:859–868CrossRefGoogle Scholar
  79. Walsh JJ, Dieterle DA, Lenes J (2001) A numerical analysis of carbon dynamics of the Southern Ocean phytoplankton community: the roles of light and grazing in both sequestration of atmospheric CO2 and food availability to larval krill. Deep Sea Res I 48:1–48CrossRefGoogle Scholar
  80. Wasik A (1998) Antarctic tintinnids: their ecology, morphology, ultrastructure and polymorphism. Acta Protozool 37:5–15Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maximiliano D. Garcia
    • 1
    • 2
    Email author
  • Mónica S. Hoffmeyer
    • 1
    • 2
    • 3
  • María Celeste López Abbate
    • 1
    • 2
  • María Sonia Barría de Cao
    • 1
    • 2
  • Rosa E. Pettigrosso
    • 4
  • Gastón O. Almandoz
    • 2
    • 5
  • Marcelo P. Hernando
    • 6
  • Irene R. Schloss
    • 2
    • 7
    • 8
  1. 1.Laboratorio de Ecología y Taxonomía de Zooplancton, Instituto Argentino de Oceanografía (IADO)CONICET Bahía BlancaBahía BlancaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Facultad Regional de Bahía BlancaUniversidad Tecnológica NacionalBahía BlancaArgentina
  4. 4.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
  5. 5.División Ficología, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina
  6. 6.Comisión Nacional de Energía AtómicaSan MartínArgentina
  7. 7.Instituto Antártico ArgentinoBuenos AiresArgentina
  8. 8.Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiCanada

Personalised recommendations