Polar Biology

, Volume 38, Issue 8, pp 1097–1110 | Cite as

Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica

  • L. Zhang
  • A. D. Jungblut
  • I. Hawes
  • D. T. Andersen
  • D. Y. Sumner
  • T. J. Mackey
Original Paper


Perennially ice-covered, meromictic lakes in the McMurdo Dry Valleys, Antarctica, are useful models to study the relationship between cyanobacterial and environmental variables. They have rich benthic cyanobacterial mat accumulations and stable stratification of physical and chemical conditions. Here, we evaluated cyanobacteria from benthic mats from multiple depths in three geographically separated ice-covered lakes, Lakes Vanda, Hoare and Joyce, using 16S rRNA gene clone libraries. We identified 19 ribotypes, mostly Oscillatoriales and several Chroococcales, as well as potentially novel cyanobacterial ribotypes. The majority of ribotype diversity was shared between lakes, and only a weak relationship between ribotype community structure and environmental variables was evident. Multivariate analysis of all lake–depth combinations implied that photosynthetically active radiation, dissolved reactive phosphorus and conductivity were potentially important for shaping benthic communities in McMurdo Dry Valley lakes. Cyanobacterial-specific pigment signature analysis by high-performance liquid chromatography showed that the cyanobacterial communities responded to light conditions similarly, irrespective of community composition. The results imply a capability within a suite of cyanobacteria to colonise, adapt and grow across broad environmental ranges and geographic space, and such adaptability may provide a high degree of community resistance and resilience to future climate-driven environmental change in Antarctic terrestrial aquatic ecosystems.


Cyanobacteria 16S rRNA gene Microbial mat Pigment Diversity Lake Antarctica 



We are grateful for the support from NASA’s Exobiology (NNX08AO19G) and Astrobiology (NNX09AE77A) programs; logistic support was provided by the US National Science Foundation Office of Polar Programs. We would like to acknowledge the interaction with the Taylor Valley Long-Term Ecological Research Programme (NSF Grant 115245), Stephen Emmons for assistance with the sample collection and three anonymous reviewers for insightful comments and suggestions.

Conflict of interest

The authors do not have any conflict of interest.

Supplementary material

300_2015_1669_MOESM1_ESM.doc (215 kb)
Supplementary material 1 (DOC 215 kb)


  1. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Am Soc 105:11512–11519CrossRefGoogle Scholar
  2. Allnutt FTC, Parker BC, Seaburg KG, Simmons GM (1981) In situ nitrogen (C2H2) fixation in lakes of southern Victoria Land, Antarctica. Hydrobiol Bull 51:99–109CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  4. Andersen DT, Sumner DY, Hawes I, Webster-Brown J, MCKay CP (2011) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9:280–293PubMedCrossRefGoogle Scholar
  5. Bomblies A, McKnight DM, Andrews ED (2001) Retrospective simulation of lake-level rise in Lake Bonney based on recent 21-yr record: indication of recent climate change in the McMurdo Dry Valleys, Antarctica. J Paleolimnol 25:477–492CrossRefGoogle Scholar
  6. Broady P, Kibblewhite A (1991) Morphological characterisation of Oscillatoria (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarct Sci 3:35–45CrossRefGoogle Scholar
  7. De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc B 276:3591–3599PubMedCentralPubMedCrossRefGoogle Scholar
  8. Fountain AG, Nylen TH, Monaghan A, Basagic HJ, Bromwich D (2009) Snow in the McMurdo Dry Valleys, Antarctica. Int J Climatol 30:633–642Google Scholar
  9. Green WJ, Lyons WB (2009) The saline lakes of the McMurdo Dry Valleys, Antarctica. Aquat Geochem 15:321–348CrossRefGoogle Scholar
  10. Hawes I, Schwarz A-M (1999) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. J Phycol 35:448–459CrossRefGoogle Scholar
  11. Hawes I, Schwarz A-M (2001) Absorption and utilization of low irradiance by cyanobacterial mats in two ice-covered Antarctic lakes. J Phycol 37:5–15CrossRefGoogle Scholar
  12. Hawes I, Sumner DY, Andersen DT, Mackey TJ (2011) Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice-covered Antarctic lake. Geobiology 9:394–410PubMedCrossRefGoogle Scholar
  13. Hawes I, Sumner DY, Andersen DT, Jungblut AD, Mackey TJ (2013a) Timescales of growth response of microbial mats to environmental change in an ice-covered Antarctic lake. Biology 2:151–176PubMedCentralPubMedCrossRefGoogle Scholar
  14. Hawes I, Howard-Williams C, Sorrell B (2013b) Decadal variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, Southern Victoria Land, Antarctica on decadal timescales. Antarct Sci 26:219–230CrossRefGoogle Scholar
  15. Howard-Williams C, Pridmore R, Downes M, Vincent VF (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 1:125–131CrossRefGoogle Scholar
  16. Howard-Williams C, Schwarz A-M, Hawes I, Priscu JC (1998) Optical properties of the McMurdo Dry Valley lakes. In: Priscu JC (ed) Ecosystem dynamics in a Polar Desert: the McMurdo Dry Valleys, Antarctica, Antarctic research series, vol 72. American Geophysical Union, Washington DC, pp 189–203Google Scholar
  17. Huber JA, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319PubMedCrossRefGoogle Scholar
  18. Jepsen SM, Adams EE, Priscu JC (2010) Sediment melt-migration dynamics in perennial Antarctic lake ice. Arct Antarct Alp Res 42:57–66CrossRefGoogle Scholar
  19. Jungblut AD, Neilan BA (2010) Cyanobacteria mats of the meltwater ponds on the McMurdo Ice Shelf (Antarctica). In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Cellular origin, life in extreme habitats and astrobiology. Springer, Berlin, pp 499–514Google Scholar
  20. Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529PubMedCrossRefGoogle Scholar
  21. Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202PubMedCrossRefGoogle Scholar
  22. Jungblut AD, Wood AD, Webster-Brown J, Harris C (2012) The pyramid trough wetland: environmental and biological diversity in a newly created Antarctic protected area. FEM Microb Ecol 82:356–366CrossRefGoogle Scholar
  23. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8225–8235CrossRefGoogle Scholar
  24. Lozupone C, Hamady M, Knight R (2006) UniFrac—An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform 7:371CrossRefGoogle Scholar
  25. Lyons WB, Finlay JC (2008) Biogeochemical processes in high-latitude lakes and rivers. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press Inc., New York, pp 137–156CrossRefGoogle Scholar
  26. McKay C, Clow G, Andersen D, Wharton R (1994) Light transmission and reflection in perennially ice-covered Lake Hoare, Antarctica. J Geophys Res Oceans 99:20427–20444Google Scholar
  27. Michaud AB, Sabacká M, Priscu JC (2012) Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica. FEMS Microbiol Ecol 82:268–278PubMedCrossRefGoogle Scholar
  28. Nadeau TL, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic oscillatorians (cyanobacteria). J Phycol 37:650–654CrossRefGoogle Scholar
  29. Novis PM, Smissen RD (2006) Two genetic and ecological groups of Nostoc commune in Victoria Land, Antarctica, revealed by AFLP analysis. Antarct Sci 18:573–581CrossRefGoogle Scholar
  30. Parker BC, Simmons GM, Wharton RA, Seaburg G, Love FG (1982) Removal of organic and inorganic matter from Antarctic lakes by aerial escape of bluegreen algal mats. J Phycol 18:72–78CrossRefGoogle Scholar
  31. Peeters K, Hodgson DA, Convey P, Willems A (2011) Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundstrom Lake (Shackleton Range), Antarctica. Microb Ecol 62:399–413PubMedCrossRefGoogle Scholar
  32. Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227CrossRefGoogle Scholar
  33. Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CW, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098PubMedCrossRefGoogle Scholar
  34. Quesada A, Vincent WF (2012) Cyanobacteria in the cryosphere: snow, ice and extreme cold. In: Whitton BA (ed) Ecology of Cyanobacteria II: their diversity in space and time. Springer Science & Business Media, Dordrecht, pp 387–399CrossRefGoogle Scholar
  35. Quesada A, Fernandez-Valiente E, Hawes I, Howard-Williams C (2008) Benthic primary production in polar lakes and rivers. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press Inc., New York, pp 179–196CrossRefGoogle Scholar
  36. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCentralPubMedCrossRefGoogle Scholar
  37. Simmons GM, Wharton RA, Vestal JA (1993) Environmental regulators of microbial activity in continental Antarctic lakes. In: Green WJ, Friedmann EI (eds) Physical and Biogeochemical processes in Antarctic lakes. American Geophysical Union, Washington, D.C., pp 165–195CrossRefGoogle Scholar
  38. Sogin M, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Am Soc 103:12115–12120CrossRefGoogle Scholar
  39. Squyres SW, Andersen DW, Nedell SS, Wharton RA (1991) Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover. Sedimentology 38:363–379PubMedCrossRefGoogle Scholar
  40. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web server. Syst Biol 57:758–771PubMedCrossRefGoogle Scholar
  41. Strunecky O, Komárek J, Johansen J, Lukešová A, Elster J (2013) Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, cyanobacteria). J Phycol 49:1167–1180CrossRefGoogle Scholar
  42. Sutherland D, Hawes I (2009) Annual growth layers as proxies of past growth conditions for benthic microbial mats in a perennially ice-covered Antarctic lake. FEMS Microb Ecol 67:279–292CrossRefGoogle Scholar
  43. Taton AS, Grubisic E, Brambilla R, Wit De, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169PubMedCentralPubMedCrossRefGoogle Scholar
  44. Taton AS, Grubisic E, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289PubMedCrossRefGoogle Scholar
  45. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s Guide: software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, NYGoogle Scholar
  46. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911CrossRefGoogle Scholar
  47. Vincent WF (2000) Cyanobacterial dominance in polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 321–340Google Scholar
  48. Vincent WF, Vincent C (1982) Factors controlling phytoplankton production in Lake Vanda (77°S). Can J Fish Aquat Sci 39:1602–1609CrossRefGoogle Scholar
  49. Vincent WF, Rae R, Laurion I, Howard-Williams C, Priscu JC (1998) Transparency of Antarctic lakes to solar ultraviolet radiation. Limnol Oceanogr 43:618–624CrossRefGoogle Scholar
  50. Vincent WF, Maclntyre S, Spigel RH, Laurio I (2008) The physical limnology of high-latitude lakes. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers: limnology of arctic and antarctic aquatic ecosystems. Oxford University Press Inc., New York, pp 65–81CrossRefGoogle Scholar
  51. Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, WillemA Peeters K, Van de Vijver B, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic microorganisms. Polar Sci 4:103–113CrossRefGoogle Scholar
  52. Wharton RA, Parker BC, Simmons GM (1983) Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. Phycologia 22:355–365CrossRefGoogle Scholar
  53. Wharton RA, McKay C, Clow G, Andersen D (1993) Perennial ice covers and their influence on Antarctic lake ecosystems. Antarc Res Ser ANTSA 4:53–70Google Scholar
  54. Zakhia F, Jungblut AD, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Marx JC, Gerday C (eds) Psychrophiles from biodiversity to biotechnology. Springer, Berlin, pp 121–135CrossRefGoogle Scholar
  55. Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. Zhang
    • 1
    • 2
  • A. D. Jungblut
    • 2
  • I. Hawes
    • 3
  • D. T. Andersen
    • 4
  • D. Y. Sumner
    • 5
  • T. J. Mackey
    • 5
  1. 1.Helmholtz Zentrum MünchenInstitut für GrundwasserökologieNeuherbergGermany
  2. 2.Life Sciences DepartmentThe Natural History MuseumLondonUK
  3. 3.Gateway AntarcticaUniversity of CanterburyChristchurchNew Zealand
  4. 4.Carl Sagan Center for the Study of Life in the UniverseSETI InstituteMountain ViewUSA
  5. 5.Department of Earth and Planetary SciencesUniversity of California, DavisDavisUSA

Personalised recommendations