Advertisement

Polar Biology

, Volume 38, Issue 7, pp 1091–1096 | Cite as

A recolonization record of the invasive Poa annua in Paradise Bay, Antarctic Peninsula: modeling of the potential spreading risk

  • Marco A. Molina-MontenegroEmail author
  • Luis R. Pertierra
  • Pablo Razeto-Barry
  • Javier Díaz
  • Víctor L. Finot
  • Cristian Torres-Díaz
Short Note

Abstract

Antarctica is one of the most extreme environments for vascular plants occurrence worldwide, and only two native vascular plants have colonized this continent: Deschampsia antarctica and Colobanthus quitensis. Nevertheless, in recent years, several alien plant species has been found in Antarctica with negative effects on the native flora. In this study, we show a recolonization record of the most widespread plant invader in Antarctica (Poa annua) and the risk of a potential spreading in a highly visited site on the Antarctic Peninsula. Overall, two new P. annua individuals were recorded, where four specimens were previously reported and removed in 2010, suggesting that either a propagule load is continuous, or that a seed bank prevailed in the site. On the other hand, the spreading modeling suggests that the probability to colonize and spreading of P. annua increases notoriously with the possibility of dispersion of propagules, with consequent risk of displacement for the native flora. Biological invasions are a major threat to the integrity of native biodiversity in all biomes, and they have the potential to change irreversibly Antarctica’s fragile ecosystems.

Keywords

Antarctica Biodiversity Invasions Poa annua 

Notes

Acknowledgments

This work was financed by the INACH (RT_11-13) project of the Chilean Antarctic Institute (INACH). We thank Robert J. Soreng of Smithsonian Institution, Washington DC, for helping us with the taxonomical determination of Poa annua.

Supplementary material

300_2015_1668_MOESM1_ESM.doc (10.7 mb)
Supplementary material 1 (DOC 10941 kb)

References

  1. Argent RM (2004) An overview of model integration for environmental applications—components, frameworks and semantics. Environ Model Softw 19:219–234CrossRefGoogle Scholar
  2. Barnes DKA, Hodgson DA, Convey P, Allen C, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Glob Ecol Biogeogr 15:121–142CrossRefGoogle Scholar
  3. Chown SL, Huiskes AHL, Gremmen NJM, Lee JE, Terauds A, Crosbie K, Frenot Y, Hughes KA, Imura S, Kiefer K, Lebouvier M, Raymond B, Tsujimoto M, Ware C, Van de Vijver B, Bergstrom DM (2012) Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc Natl Acad Sci USA 109:4938–4943PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chwedorzewska KJ (2008) Poa annua L. in Antarctic: searching for the resource of introduction. Polar Biol 31:263–268CrossRefGoogle Scholar
  5. Chwedorzewska KJ (2009) Terrestrial Antarctic ecosystems in the changing world: an overview. Pol Polar Res 30:263–276CrossRefGoogle Scholar
  6. Chwedorzewska KJ, Korczak M (2010) Human impact upon the environment in the vicinity of Arctowski Station, King George Island, Antarctica. Pol Polar Res 31:45–60CrossRefGoogle Scholar
  7. Chwedorzewska KJ, Korczak-Abshire M, Olech M, Litynska-Zajac M, Augustyniuk-Kram A (2011) Alien invertebrates transported accidentally to the Polish antarctic station in cargo and on fresh foods. Pol Polar Res 34:55–66Google Scholar
  8. Convey P, Gibson JAE, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117PubMedCrossRefGoogle Scholar
  9. Convey P, Bindschadler RA, di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski P, Summerhayes CP, Turner J (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563CrossRefGoogle Scholar
  10. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invisibility. J Ecol 88:528–534CrossRefGoogle Scholar
  11. De Angelis DL, Mooij WM (2005) Individual-based modeling of ecological and evolutionary processes. Annu. Rev Ecol Evol S 36:147–168CrossRefGoogle Scholar
  12. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72PubMedCrossRefGoogle Scholar
  13. Giussani LM, Anton AM, Negritto MA, Romanutti AA, Soreng RJ (2012) Poa L. In: Zuloaga FO, Rúgolo de Agrasar ZE, Anton AM (eds) Flora Vascular de la República Argentina, tomo 2: Poaceae: Pooideae. Córdoba, pp 284–339Google Scholar
  14. Heger T, Trepl L (2003) Predicting biological invasions. Biol Invasions 5:313–321CrossRefGoogle Scholar
  15. Higgins SI, Richardson DM, Cowling RM (1996) Modeling invasive plant spread: the role of plant-environment interactions and model structure. Ecology 77:2043–2054CrossRefGoogle Scholar
  16. Higgins SI, Richardson DM, Cowling RM (2000) Using a dynamic landscape model for planning the management of alien plant invasions. Ecol Appl 10:1833–1848CrossRefGoogle Scholar
  17. Hughes KA, Convey P (2014) Alien invasions in Antarctica—is anyone liable? Polar Res 33:22103CrossRefGoogle Scholar
  18. Hughes KA, Convey P, Maslen NR, Smith RIL (2010) Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biol Invasions 12:875–891CrossRefGoogle Scholar
  19. Huiskes AHL, Gremmen NJM, Bergstrom DM, Frenot Y, Hughes KA, Imura S, Kiefer K, Lebouvier M, Lee JE, Tsujimoto M, Ware C, Van de Vijver B, Chown SL (2014) Aliens in Antarctica: assessing transfer of plant propagules by human visitors to reduce invasion risk. Biol Conserv 171:278–284CrossRefGoogle Scholar
  20. Lynch HJ, Crosbie K, Fagan WF, Naveen R (2010) Spatial patterns of tour ship in the Antarctic Peninsula region. Antarct Sci 22:123–130CrossRefGoogle Scholar
  21. Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey O, Valladares F, Gianoli E (2012) Occurrence of the non-native annual Bluegrass on the Antarctic mainland and its negative effects on the native plants. Conserv Biol 26:717–723PubMedCrossRefGoogle Scholar
  22. Molina-Montenegro MA, Muñoz C, Torres-Díaz C, Gómez-González S, Salgado-Luarte C, Gianoli E (2013) Positive interactions between the lichen Usnea antarctica (Parmeliaceae) and the native flora in Maritime Antarctica. J Veg Sci 24:463–472CrossRefGoogle Scholar
  23. Molina-Montenegro MA, Carrasco-Urra F, Acuña-Rodríguez IS, Oses R, Torres-Díaz C, Chwedorzewska KJ (2014) Assessing the importance of human activities for the establishment of the invasive Poa annua in the Antarctica. Polar Res 33:21425CrossRefGoogle Scholar
  24. Olech M, Chwedorzewska KJ (2011) The first appearance and establishment of an alien vascular plant in natural habitats on the forefield of a retreating glacier in Antarctica. Antarct Sci 23:153–154CrossRefGoogle Scholar
  25. Pertierra LR, Lara F, Benayas F, Hughes KA (2013) Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biol 36:1473–1481CrossRefGoogle Scholar
  26. Robinson SA, Wasley J, Tobin K (2003) Living on the edge—plants and global change in continental and maritime Antarctica. Glob Change Biol 9:1681–1717CrossRefGoogle Scholar
  27. Smith RIL (1996) Introduced plants in Antarctica: potential impacts and conservation issues. Biol Conserv 76:135–146CrossRefGoogle Scholar
  28. Smith RIL (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 234–239Google Scholar
  29. Tzvelev NN (1983) Grasses of the Soviet Union, part II. Oxonian Press, New DelhiGoogle Scholar
  30. Wasley JS, Robinson A, Lovelock CE, Popp M (2006) Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Glob Change Biol 12:1800–1812CrossRefGoogle Scholar
  31. Wódkiewicz M, Ziemiański M, Kwiecień K, Chwedorzewska KJ, Galera H (2014) Spatial structure of the soil seed bank of Poa annua L.—alien species in the Antarctica. Biodivers Conserv 23:1339–1346CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marco A. Molina-Montenegro
    • 1
    Email author
  • Luis R. Pertierra
    • 2
  • Pablo Razeto-Barry
    • 3
    • 4
  • Javier Díaz
    • 3
  • Víctor L. Finot
    • 5
  • Cristian Torres-Díaz
    • 6
  1. 1.Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  2. 2.Área de Biodiversidad y Conservación, Departamento de Biología y GeologíaUniversidad Rey Juan CarlosMadridSpain
  3. 3.Instituto de Filosofía y Ciencias de la Complejidad (IFICC)Los Alerces Chile
  4. 4.Vicerrectoría AcadémicaUniversidad Diego PortalesSantiagoChile
  5. 5.Departamento de Producción Animal, Facultad de AgronomíaUniversidad de ConcepciónChillánChile
  6. 6.Departamento de Ciencias Básicas, Facultad de CienciasUniversidad del Bío-BíoChillánChile

Personalised recommendations