Polar Biology

, Volume 39, Issue 11, pp 2141–2153 | Cite as

Do bioturbation and consumption affect coastal Arctic marine soft-bottom communities?

  • Sina Petrowski
  • Markus Molis
  • Katrin Schachtl
  • Christian Buschbaum
Original Paper


Biotic factors such as bioturbation and predation affect abundance and species composition of marine soft-bottom communities from tropical to temperate regions, but their impact has been rarely investigated in Arctic coastal systems. By conducting a factorial manipulative field experiment, we excluded the bioturbating lugworm Arenicola marina and predacious consumers from a sedimentary nearshore area in Kongsfjorden (Spitsbergen) for 70 days to explore their role in structuring the benthic community. The removal of A. marina caused an increase in average species number by 25 %, a doubling increase in the average number of individuals and an increase in dry mass of benthic organisms by, on average, 73 % in comparison with untreated areas. Additionally, community composition was significantly modified by lugworm exclusion resulting in higher average densities of the cumacean Lamprops fuscatus (4.2-fold), the polychaete worms Euchone analis (3.7-fold) and Pygospio cf. elegans (1.5-fold), the bivalve Crenella decussata (2.8-fold) and the amphipod Crassicorophium crassicorne (1.2-fold), which primarily contribute to the observed differences. Consumer exclusion, by contrast, showed no effects on the response variables. This result was independent from bioturbation due to missing interaction between both biotic factors. We conclude that present levels of bioturbation may considerably affect Arctic coastal soft-bottom communities. In contrast, predation by macro-epibenthic consumers currently seems to be of minor importance. This might change in a predicted warmer Arctic with assumed higher predator abundances and a northward expansion of boreal consumers.


Bioturbation Predation Soft-bottom benthos Arctic shallow water Field experiment 



This work was performed at the International Arctic Environmental Research and Monitoring Facility at Ny-Ålesund, Spitsbergen, Norway. We thank Christian Wiencke for his great support. We are grateful for logistic support by the AWIPEV and the AWI diving group, in particular, Max Schwanitz for indispensable technical consultation and support. Underwater field assistance by Kai Schwalfenberg and Florian Sprung is acknowledged. Comments by D. Lackschewitz, P. Renaud, G. Veit-Köhler, M. Greenacre and one anonymous reviewer greatly improved an earlier version of the manuscript. We thank Lilo Herre for her help in the organization of our expedition.


  1. Ambrose WG (1984) Role of predatory infauna in structuring marine soft-bottom communities. Mar Ecol Prog Ser 17:109–115CrossRefGoogle Scholar
  2. Ambrose WG, Leinaas HP (1988) Intertidal soft-bottom communities on the west coast of Spitsbergen. Polar Biol 8:393–395CrossRefGoogle Scholar
  3. Baeta A, Cabral HN, Marques JC, Pardal MA (2006) Feeding ecology of the green crab, Carcinus maenas, (L., 1758) in a temperate estuary, Portugal. Crustaceana 79:1181–1193CrossRefGoogle Scholar
  4. Berge J, Renaud PE, Eiane K, Gulliksen B, Cottier FR, Varpe O, Brattegard T (2009) Changes in the decapod fauna of an Arctic fjord during the last 100 years (1908–2007). Polar Biol 32:953–961CrossRefGoogle Scholar
  5. Berkenbusch K, Rowden AA, Probert PK (2000) Temporal and spatial variation in macrofauna community composition imposed by ghost shrimp Callianassa filholi bioturbation. Mar Ecol Prog Ser 192:249–257CrossRefGoogle Scholar
  6. Beuchel F, Gulliksen B (2008) Temporal patterns of benthic community development in an Arctic fjord (Kongsfjorden, Svalbard): results of a 24-year manipulation study. Polar Biol 31:913–924CrossRefGoogle Scholar
  7. Beukema JJ (1976) Biomass and species richness of the macrobenthic animals living on the tidal flats of the Dutch Wadden Sea. Neth J Sea Res 10:236–261CrossRefGoogle Scholar
  8. Beukema JJ (1991) The abundance of shore crabs Carcinus maenas (L.) on a tidal flat in the Wadden Sea after cold and mild winters. J Exp Mar Biol Ecol 153:97–113CrossRefGoogle Scholar
  9. Beukema JJ, Flach EC, Dekker R, Starink M (1999) A long-term study of the recovery of the macrozoobenthos on large defaunated plots on a tidal flat in the Wadden Sea. J Sea Res 42:235–254CrossRefGoogle Scholar
  10. Bick A, Arlt G (2005) Intertidal and subtidal soft-bottom macro- and meiofauna of the Kongsfjord (Spitsbergen). Polar Biol 28:550–557CrossRefGoogle Scholar
  11. Brey T (1991) The relative significance of biological and physical disturbance: an example from intertidal and subtidal communities. Estuar Coast Shelf Sci 33:339–360CrossRefGoogle Scholar
  12. Cadée GC (2001) Sediment dynamics by bioturbating organisms. In: Reise K (ed) Ecological comparisons of sedimentary shores. Springer, Berlin, pp 128–148Google Scholar
  13. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PlymouthGoogle Scholar
  14. Conlan KE, Kvitek RG (2005) Recolonization of soft-sediment ice scours on an exposed Arctic coast. Mar Ecol Prog Ser 286:21–42CrossRefGoogle Scholar
  15. Dittmann S (1996) Effects of macrobenthic burrows on infaunal communities in tropical tidal flats. Mar Ecol Prog Ser 134:119–130CrossRefGoogle Scholar
  16. Dittmann S, Vargas JA (2001) Tropical tidal flat benthos compared between Australia and Central America. In: Reise K (ed) Ecological comparisons of sedimentary shores. Ecological studies 151. Springer, Berlin, pp 275–293CrossRefGoogle Scholar
  17. Dowdeswell JA, Forsberg CF (1992) The size and frequency of icebergs and bergy bits derived from tidewater glaciers in Kongsfjorden, northwest Spitsbergen. Polar Res 11:81–91CrossRefGoogle Scholar
  18. Fagerli CW, Norderhaug KM, Christie H, Pedersen MF, Fredriksen S (2014) Predators of the destructive sea urchin Strongylocentrotus droebachiensis on the Norwegian coast. Mar Ecol Prog Ser 502:207–218CrossRefGoogle Scholar
  19. Flach EC (1992) Disturbance of benthic infauna by sediment-reworking activities of the lugworm Arenicola marina. Neth J Sea Res 30:81–89CrossRefGoogle Scholar
  20. Flach EC (2003) The separate and combined effects of epibenthic predation and presence of macro-infauna on the recruitment success of bivalves in shallow soft-bottom areas on the Swedish west coast. J Sea Res 49:59–67CrossRefGoogle Scholar
  21. Folk RL, Ward WC (1957) Brazos River Bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26CrossRefGoogle Scholar
  22. González-Ortiz V, Alcazar P, Vergara JJ, Pérez-Lloréns JL, Brun FG (2014) Effects of two antagonistic ecosystem engineers on infaunal diversity. Estuar Coast Shelf Sci 139:20–26CrossRefGoogle Scholar
  23. Guijarro Garcia E, Ragnarsson SA, Eiriksson H (2006) Effects of scallop dredging on macrobenthic communities in west Iceland. ICES J Mar Sci 63:434–443CrossRefGoogle Scholar
  24. Gulliksen B, Palerud R, Brattegard T, Sneli J-A (1999) Distribution of benthic macro-organisms at Svalbard (including Bear Island) and Jan Mayen. Research Report for DN 1999-4. Directorate for Nature Management, Trondheim, NorwayGoogle Scholar
  25. Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564CrossRefGoogle Scholar
  26. Hall SJ, Raffaelli D, Robertson MR, Basford DJ (1990) The role of the predatory crab, Liocarcinus depurator, in a marine food web. J Anim Ecol 59:421–438CrossRefGoogle Scholar
  27. Herrmann M (2006) Makrozoobenthos-Gemeinschaften arktischer Weichböden: Struktur und Bedeutung als Nahrungsgrundlage demersaler Fische. Berichte zur Polar- und Meeresforschung. Alfred-Wegener-Institut für Polar- und Meersforschung, BremerhavenGoogle Scholar
  28. Hop H, Pearson TH, Nøst Hegseth E, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leaky RJG, Lønne OJ, Zajączkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  29. Ito H, Kudoh S (1997) Characteristics of water in Kongsfjorden, Svalbard. Proc NIPR Symp Polar Meterol Glaciol 11:211–232Google Scholar
  30. Kaczmarek H, Wlodarska-Kowalczuk M, Legeżyńska J, Zajączkowski M (2005) Shallow sublittoral macrozoobenthos in Kongsfjord, West Spitsbergen, Svalbard. Pol Polar Res 26:137–155Google Scholar
  31. Kedra M, Wlodarska-Kowalczuk M, Weslawski JM (2010) Decadal change in macrobenthic soft-bottom community structure in a high Arctic fjord (Kongsfjorden, Svalbard). Polar Biol 33:1–11CrossRefGoogle Scholar
  32. Konar B (2007) Recolonization of a high latitude hard-bottom nearshore community. Polar Biol 30:663–667CrossRefGoogle Scholar
  33. Konar B (2013) Lack of recovery from disturbance in high-arctic boulder communities. Polar Biol 36:1205–1214CrossRefGoogle Scholar
  34. Kuklinski P, Berge J, McFadden L, Dmoch K, Zajczkowski M, Nygard H, Piwosz K, Tatarek A (2013) Seasonality of occurrence and recruitment of Arctic marine benthic invertebrate larvae in relation to environmental variables. Polar Biol 36:549–560CrossRefGoogle Scholar
  35. Lackschewitz D, Reise K (1998) Macrofauna on flood delta shoals in the Wadden Sea with an underground association between the lugworm Arenicola marina and the amphipod Urothoe poseidonis. Helgol Meeresunters 52:147–158CrossRefGoogle Scholar
  36. Laudien J, Herrmann M, Arntz W (2007) Soft bottom species richness and diversity as a function of depth and iceberg scour in Arctic glacial Kongsfjorden (Svalbard). Polar Biol 30:1035–1046CrossRefGoogle Scholar
  37. Legezynska J, Weslawski JM, Presler P (2000) Benthic scavengers collected by baited traps in the high Arctic. Polar Biol 23:539–544CrossRefGoogle Scholar
  38. Markowska M, Janecki T, Kidawa A (2008) Field observations of the spider crab, Hyas araneus (L., 1758): feeding behaviour in an Arctic fjord. Crustaceana 81:1211–1217CrossRefGoogle Scholar
  39. Maximovich NV, Guerassimova AV (2003) Life history characteristics of the clam Mya arenaria in the White Sea. Helgol Mar Res 57:91–99CrossRefGoogle Scholar
  40. Meysman FJ, Middelburg JJ, Heip CH (2006) Bioturbation: a fresh look at Darwin`s last idea. Trends Ecol Evol 21:688–695CrossRefPubMedGoogle Scholar
  41. Michaelis H, Wolff WJ (2001) Soft-bottom fauna of a tropical (Banc d’Arguin, Mauritania) and a temperate (Juist area, German North Sea coast) intertidal area. In: Reise K (ed) Ecological comparisons of sedimentary shores. Ecological studies 151. Springer, Berlin, pp 255–274CrossRefGoogle Scholar
  42. Olafsson EBC, Peterson CW, Ambrose WG (1994) Does recruitment limitation structure populations and communities of macro-invertebrates in marine sediments: the relative importance of pre- and post-settlement processes. Oceanogr Mar Biol Ann Rev 32:65–109Google Scholar
  43. Paine RT (1980) Food webs: linkage, interaction strength and community infrastructure. J Anim Ecol 49:667–685CrossRefGoogle Scholar
  44. Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C (2014) Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res 92:92–101CrossRefGoogle Scholar
  45. Pickering T, Quijon PA (2011) Potential effects of a non-indigenous predator in its expanded range: assessing green crab, Carcinus maenas, prey preference in a productive coastal area of Atlantic Canada. Mar Biol 158:2065–2078CrossRefGoogle Scholar
  46. Pillay D, Branch GM (2011) Bioengineering effects of burrowing thalassinidean shrimps on marine soft-bottom ecosystems. Oceanogr Mar Biol Ann Rev 49:137–192Google Scholar
  47. Quijon PA, Snelgrove PVR (2005) Differential regulatory roles of crustacean predators in a sub-arctic, soft-sediment system. Mar Ecol Prog Ser 285:137–149CrossRefGoogle Scholar
  48. Quinn GP, Keough MJ (2002) Experimental design and data Analysis for biologists. University Press, CambridgeCrossRefGoogle Scholar
  49. Rabaut M, Guilini K, Van Hoey G, Vincx M, Degraer S (2007) A bio-engineered soft-bottom environment: the impact of Lanice conchilega on the benthic species-specific densities and community structure. Estuar Coast Shelf Sci 75:525–536CrossRefGoogle Scholar
  50. Reise K (1985) Tidal flat ecology. Springer, BerlinCrossRefGoogle Scholar
  51. Reise K (2002) Sediment mediated species interactions in coastal waters. J Sea Res 48:127–141CrossRefGoogle Scholar
  52. Riisgard HU, Banta GT (1998) Irrigation and deposit feeding by the lugworm Arenicola marina, characteristics and secondary effects on the environment. A review of current knowledge. Vie Milieu 48:243–257Google Scholar
  53. Strasser M (2002) Reduced epibenthic predation on intertidal bivalves after a severe winter in the European Wadden Sea. Mar Ecol Prog Ser 241:113–123CrossRefGoogle Scholar
  54. Strasser M, Dekker R, Essink K, Günther CP, Jaklin S, Kröncke I, Madsen PB, Michaelis H, Vedel G (2003) How predictable is high bivalve recruitment in the Wadden Sea after a severe winter? J Sea Res 49:47–57CrossRefGoogle Scholar
  55. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajączkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  56. Thompson JC (2002) The influence of hunger and olfactory cues on the feeding behavior of the waved whelk, Buccinum undatum, on the blue mussel, Mytilus edulis. Veliger 45:55–57Google Scholar
  57. Varfolomeeva M, Naumov A (2013) Long-term temporal and spatial variation of macrobenthos in the intertidal soft-bottom flats of two small bights (Chupa Inlet, Kandalaksha Bay, White Sea). Hydrobiologia 706:175–189CrossRefGoogle Scholar
  58. Veit-Köhler G, Laudien J, Knott J, Velez J, Sahade R (2008) Meiobenthic colonization of soft sediments in arctic glacial Kongsfjorden (Svalbard). J Exp Mar Biol Ecol 363:58–65CrossRefGoogle Scholar
  59. Volkenborn N, Reise K (2006) Lugworm exclusion experiment: responses by deposit feeding worms to biogenic habitat transformations. J Exp Mar Biol Ecol 330:169–179CrossRefGoogle Scholar
  60. Volkenborn N, Reise K (2007) Effects of Arenicola marina on polychaete functional diversity revealed by large-scale experimental lugworm exclusion. J Sea Res 57:17–88CrossRefGoogle Scholar
  61. Volkenborn N, Hedtkamp SIC, van Beusekom JEE, Reise K (2007) Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal succession. Estuar Coast Shelf Sci 74:331–343CrossRefGoogle Scholar
  62. Volkenborn N, Robertson DM, Reise K (2009) Sediment destabilizing and stabilizing bio-engineers on tidal flats: cascading effects of experimental exclusion. Helgol Mar Res 63:27–35CrossRefGoogle Scholar
  63. Voronkov A, Hop H, Gulliksen B (2013) Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard. Polar Res 32: 11208.
  64. Wendelboe K, Egelund JT, Flindt MR, Valdemarsen T (2013) Impact of lugworms (Arenicola marina) on mobilization and transport of fine particles and organic matter in marine sediments. J Sea Res 76:31–38CrossRefGoogle Scholar
  65. Weslawski JM, Kendall MA, Wlodarska-Kowalczuk M, Iken K, Kedra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85CrossRefGoogle Scholar
  66. Wilson WH (1991) Competition and predation in soft-sediment communities. Annu Rev Ecol Syst 21:221–241CrossRefGoogle Scholar
  67. Włodarska-Kowalczuk M (2007) Molluscs in Kongsfjorden (Spitsbergen, Svalbard): a species list and patterns of distribution and diversity. Polar Res 26:48–63CrossRefGoogle Scholar
  68. Wlodarska-Kowalczuk M, Pearson TH (2004) Soft-bottom macrobenthic faunal associations and factors affecting species distributions in an Arctic glacial fjord (Kongsfjord, Spitsbergen). Polar Biol 27:155–167CrossRefGoogle Scholar
  69. Wlodarska-Kowalczuk M, Pearson TH, Kendall MA (2005) Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fjord. Mar Ecol Prog Ser 303:31–41CrossRefGoogle Scholar
  70. Woll AK, van der Meeren GI, Fossen I (2006) Spatial variation in abundance and catch composition of Cancer pagurus in Norwegian waters: biological reasoning and implications for assessment. ICES J Mar Sci 63:421–433CrossRefGoogle Scholar
  71. Woodin SA (1986) Settlement of infauna: larval choice? B Mar Sci 39:401–407Google Scholar
  72. Woodin SA (1999) Shallow water benthic ecology: a North American perspective of sedimentary habitats. Aust J Ecol 24:291–301CrossRefGoogle Scholar
  73. Woodin SA, Lindsay SM, Wethey DS (1995) Process-specific recruitment cues in marine sedimentary systems. Biol Bull 189:49–58CrossRefGoogle Scholar
  74. Yakovis EL, Artemieva AV, Fokin MV, Varfolomeeva MA, Shunatova NN (2013) Synchronous annual recruitment variation in barnacles and ascidians in the White Sea shallow subtidal 1999-2010. Hydrobiologia 706:69–79CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sina Petrowski
    • 1
  • Markus Molis
    • 1
  • Katrin Schachtl
    • 2
    • 3
  • Christian Buschbaum
    • 2
  1. 1.Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchList/SyltGermany
  3. 3.Ludwig-Maximilians-Universität München, Aquatische ÖkologieMartinsried-PlaneggGermany

Personalised recommendations