Polar Biology

, Volume 38, Issue 6, pp 879–893 | Cite as

Shifts in female polar bear (Ursus maritimus) habitat use in East Greenland

  • Kristin L. Laidre
  • Erik W. Born
  • Patrick Heagerty
  • Øystein Wiig
  • Harry Stern
  • Rune Dietz
  • Jon Aars
  • Magnus Andersen
Original Paper

Abstract

Few studies have investigated the impacts of climate change on polar bears (Ursus maritimus) in East Greenland (EG), where some of the largest rates of sea ice loss have occurred. We used remotely sensed sea ice data to quantify changes in timing of sea ice freeze-up and breakup in EG polar bear habitat between 1979 and 2012. We then quantified movement rates, area use, habitat selection, and distribution and phenology of maternity denning using data from adult female polar bears tracked with satellite transmitters between 2007 and 2010 (n = 7). We compared results to historical data collected from adult females in the 1990s (n = 4). Adult females in the 2000s used areas with significantly lower sea ice concentrations (10–15 % lower) than bears in the 1990s during winter, a pattern influenced by delayed freeze-up in October–December. Adult females in the 2000s were located significantly closer (100–150 km) to open water in all seasons and spent approximately 2 months longer in areas with <60 % sea ice concentration than bears in the 1990s. Multivariate resource selection models contrasting preference between decades showed that there was a statistically significant and stronger winter preference in the 2000s for adult females to select for higher sea ice concentrations. Timing of maternity denning did not significantly differ between decades. Results indicate that multi-decadal loss of sea ice has resulted in shifts in polar bear habitat use in EG.

Keywords

Ursus maritimus Arctic Greenland Polar bear Resource selection Sea ice 

References

  1. Aagaard K, Coachman LK (1968) The East Greenland current north of Denmark strait. Part 1. Arctic 21:181–2000Google Scholar
  2. Amstrup SC, DeMaster DP (1988) Polar bear (Ursus maritimus). Biology, management and conservation. In: Lentfer JW (ed) Selected marine mammals of Alaska: species account with research and management recommendations. Marine Mammal Commission, Washington, DC, pp 39–56Google Scholar
  3. Amstrup SC, Gardner C (1994) Polar bear maternity denning in the Beaufort Sea. J Wildl Manage 58:1–10CrossRefGoogle Scholar
  4. Amstrup SC, Durner GM, Stirling I, Messier F (2000) Movements and distribution of polar bears in the Beaufort Sea. Can J Zool 78:948–966CrossRefGoogle Scholar
  5. Andersen M, Derocher AE, Wiig Ø, Aars J (2012) Polar bear (Ursus maritimus) maternity den distribution in Svalbard, Norway. Polar Biol 35:499–508CrossRefGoogle Scholar
  6. Born EW (1983) Havpattedyr og havfugle i Scoresby Sund: Fangst og forekomst. Rapport til Grønlands Fiskeriundersøgelser, København, fra Danbiu ApS. (Biologiske Konsulenter), HellerupGoogle Scholar
  7. Born EW, Rosing-Asvid A (1989) Polar bears (Ursus maritimus) in Greenland: an overview. Published in Danish as Isbjørnen (Ursus maritimus) i Grønland: En oversigt. Grønlands Hjemmestyres Miljø- og Naturforvaltning Teknisk Rapport Nr. 8Google Scholar
  8. Born EW, Wiig Ø, Thomassen J (1997) Seasonal and annual movements of radio-collared polar bears (Ursus maritimus) in Northeast Greenland. J Mar Syst 10:67–77CrossRefGoogle Scholar
  9. Born EW, Sonne C, Dietz R (2010) Research on polar bears in Greenland, 2005–2009. In: Obbard M, Peacock E, Thiemann G (eds) Polar bears: proceedings of the 15th working meeting of the IUCN/SSC polar bear specialist group. IUCN, Gland, Switzerland and CambridgeGoogle Scholar
  10. Bromaghin JF, McDonald TL, Stirling I, Derocher AE, Richardson ES, Regehr EV, Douglas DC, Durner GM, Atwood T, Amstrup SC (2015) Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecol Appl. doi:10.1890/14-1129.1 Google Scholar
  11. Calvert W, Ramsay MA (1998) Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10:449–453Google Scholar
  12. Cavalieri DJ, Parkinson CL, Gloersen P, Zwally H (1996) Sea ice concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center. Updated yearlyGoogle Scholar
  13. Derocher AE, Wiig Ø (2002) Postnatal growth in body length and mass of polar bears at Svalbard. J Zool 256:343–349CrossRefGoogle Scholar
  14. Derocher AE, Lunn NJ, Stirling I (2004) Polar bears in a warming climate integr. Comp Biol 44(2):163–176. doi:10.1093/icb/44.2.163 CrossRefGoogle Scholar
  15. Derocher A, Andersen M, Wiig Ø, Aars J, Hansen E, Biuw M (2011) Sea ice and polar bear den ecology at Hopen Island, Svalbard. MEPS 441:273–279CrossRefGoogle Scholar
  16. Dietz R, Heide-Jørgensen MP, Born EW (1985) Marine Mammals in East Greenland: a literature review. Published in Danish as Havpattedyr i Østgrønland: En litteraturundersøgelse. Rapport til Råstofforvaltningen for Grønland og Grønlands Fiskeri- og Miljøundersøgelser, København, fra Danbiu ApS. (Biologiske Konsulenter), HellerupGoogle Scholar
  17. Dietz R, Rigét FF, Sonne C, Born EW, Bechshøft T, McKinney MA, Letcher RJ (2012) Part 1: three decades (1984–2010) of legacy contaminant trends in East Greenland polar bears (Ursus maritimus). Environ Int 59:485–493. doi:10.1016/j.envint.2012.09.004
  18. Divine DV, Dick C (2006) Historical variability of sea ice edge positions in the Nordic Seas. J Geophys Res 111:C01001. doi:10.1029/2004JC002851 Google Scholar
  19. Douglas DC, Weinzierl R, Davidson SC, Kays R, Wikelski M, Bohrer G (2012) Moderating Argos location errors in animal tracking data. Methods Ecol Evol 3:999–1007CrossRefGoogle Scholar
  20. Duong T (2007) ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. J Stat Softw 21(7):1–16Google Scholar
  21. Durner GM, Douglas DC, Nielson RM, Amstrup SC, McDonald TL, Stirling I, Mauritzen M, Born EW, Wiig Ø, DeWeaver E, Serreze MC, Belikov SE, Holland MM, Maslanik J, Aars J, Bailey DA, Derocher AE (2009) Predicting the twenty-first century distribution of polar bear habitat from general circulation model projections of sea ice. Ecol Monogr 79:25–58CrossRefGoogle Scholar
  22. Ferguson SH, Taylor MK, Born EW, Rosing-Asvid A, Messier F (1999) Determinants of home range size in polar bears. Ecol Lett 2(5):311–318CrossRefGoogle Scholar
  23. Ferguson SH, Taylor MK, Rosing-Asvid A, Born EW, Messier F (2000) Relationships between denning of polar bears and conditions of sea ice. J Mammal 81:1118–1127CrossRefGoogle Scholar
  24. Foldvik A, Aagaard K, Torresen T (1988) On the velocity field of the East Greenland Current. Deep-Sea Res 35:1335–1354CrossRefGoogle Scholar
  25. Glahder C (1995) Hunting in Kangerlussuaq. Monographs on Greenland (Meddr om Grønland) Man Soc 19: 1–86Google Scholar
  26. Heagerty PJ, Lumley T (2000) Window subsampling of estimating functions with application to regression models. JASA 95:197–211CrossRefGoogle Scholar
  27. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge and New York, NYGoogle Scholar
  28. Kie JG, Matthiopoulos J, Fieberg J, Powell RA, Cagnacci F, Mitchell MS, Gaillard JM, Moorcroft PR (2010) The home-range concept: are traditional estimators still relevant with modern telemetry technology? Phil Trans R Soc B 365:2221–2231CrossRefPubMedCentralPubMedGoogle Scholar
  29. Kovacs KM, Moore S, Overland JE, Lydersen C (2011) Impacts of changing sea ice conditions on Arctic marine mammals. Mar Biodiv 41:181–194CrossRefGoogle Scholar
  30. Laidre KL, Stirling I, Lowry LF, Wiig Ø, Heide-Jørgensen MP, Ferguson SH (2008) Quantifying the sensitivity of arctic marine mammals to climate-induced habitat change. Ecol Appl 18S:S97–S125CrossRefGoogle Scholar
  31. Laidre KL, Born EW, Gurarie E, Wiig Ø, Dietz R, Stern H (2012) Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus). Proc R Soc B Biol Sci (London), 10 pp. doi:10.1098/rspb.2012.2371
  32. Laidre KL, Stern H, Kovacs KM, Lowry L, Moore SE, Regehr EV, Ferguson SH, Wiig Ø, Boveng P, Angliss RP, Born EW, Litovka D, Quakenbush L, Lydersen C, Vongraven D, Ugarte F (2015) A circumpolar assessment of Arctic marine mammals and sea ice loss, with conservation recommendations for the twenty-first century. Conserv Biol (in press)Google Scholar
  33. Larsen T, Jonkel C, Vibe C (1983) Satellite radio-tracking of polar bears between Svalbard and Greenland. Int Conf Bear Res Manage 5:230–237Google Scholar
  34. Macias Fauria M, Grinsted A, Helama S, Moore J, Timonen M, Martma T, Isaksson E, Eronen M (2009) Unprecedented low twentieth century winter sea ice extent in the Western Nordic Seas since A.D. 1200. Clim Dyn. doi:10.1007/s00382-009-0610-z
  35. Martin T, Wadhams P (1999) Sea-ice flux in the East Greenland current. Deep-Sea Res Part II 46(6–7):1063–1082CrossRefGoogle Scholar
  36. Mauritzen M, Derocher AE, Wiig Ø, Belikov SE, Boltunov AN, Hansen E, Gardner GW (2002) Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic. J Appl Ecol 39:79–90CrossRefGoogle Scholar
  37. Mauritzen M, Derocher AE, Pavlova O, Wiig Ø (2003) Polar bears (Ursus maritimus) on drift ice: walking the treadmill. Anim Behav 66:107–113CrossRefGoogle Scholar
  38. McKinney M, Iverson S, Fisk A, Sonne C, Riget F, Letcher R, Arts M, Born E, Rosing-Asvid A, Dietz R (2013) Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob Chang Biol 19:2360–2372. doi:10.1111/gcb.12241 CrossRefPubMedGoogle Scholar
  39. Messier F, Taylor MK, Ramsay MA (1994) Denning ecology of polar bears in the Canadian Arctic archipelago. J Mammal 75:420–430CrossRefGoogle Scholar
  40. Obbard ME, Theimann GW, Peacock E, DeBryn TD (eds) (2010) Polar bears: proceedings of the 15th meeting of the polar bear specialists group IUCN/SSC, 29 June–3 July, 2009, Copenhagen, Denmark. Gland, Switzerland and Cambridge UK, IUCNGoogle Scholar
  41. Øigård TA, Haug T, Nilssen KT, Salberg AB (2010) Estimation of pup production of hooded and harp seals in the Greenland Sea in 2007: reducing uncertainty using generalized additive models. J Northw Atl Fish Sci 42:103–123. doi:10.2960/J.v42.m642 CrossRefGoogle Scholar
  42. Øigård TA, Haug T, Nilssen KT (2013) From pup production to quotas: current status of harp seals in the Greenland Sea. ICES J Mar Sci. doi:10.1093/icesjms/fst155 Google Scholar
  43. Overland JE, Wang M (2013) When will the summer Arctic be nearly sea ice free? Geophys Res Lett 40:2097–2101. doi:10.1002/grl.50316 CrossRefGoogle Scholar
  44. Paetkau D, Amstrup SC, Born EW, Calvert W, Derocher AE, Garner GW, Messier F, Stirling I, Taylor MK, Wiig Ø, Strobeck C (1999) Genetic structure of the world’s polar bear populations. Mol Ecol 8:1571–1584CrossRefPubMedGoogle Scholar
  45. Pedersen A (1945) The polar bear. Published in German as Der Eisbär. Verbreitung und Lebenswise. Copenhagen: E. Bruun and Company. 166 ppGoogle Scholar
  46. Perovich DK, Richter-Menge JA (2009) Loss of Sea Ice in the Arctic. Annu Rev Mar Sci 1:417–441CrossRefGoogle Scholar
  47. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org/
  48. Ramsay MA, Stirling I (1986) On the mating system of polar bears. Can J Zool 64:2142–2151CrossRefGoogle Scholar
  49. Regehr EV, Lunn NJ, Amstrup SC, Stirling I (2007) Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. J Wildlife Manag 71:2673–2683CrossRefGoogle Scholar
  50. Regehr EV, Hunter CM, Caswell H, Amstrup SC, Stirling I (2010) Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. J Anim Ecol 79:117–127CrossRefPubMedGoogle Scholar
  51. Rigor I, Ortmeyer M (1999) Observations of sea level pressure, surface air temperature and ice motion from the international arctic buoy programme, APL-UW TM 2-99, Applied Physics Laboratory, University of WashingtonGoogle Scholar
  52. Rode KD, Amstrup SC, Regehr EV (2010) Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol Appl 20:768–782CrossRefPubMedGoogle Scholar
  53. Rode KD, Peacock E, Taylor M, Stirling I, Born EW, Laidre KL, Wiig Ø (2012) A tale of two polar bear populations: ice habitat, harvest, and body condition. Pop Ecol 54:3–18. doi:10.1007/s10144-011-0299-9 CrossRefGoogle Scholar
  54. Sandell HT, Sandell B, Born EW, Dietz R, Sonne-Hansen C (2001) Isbjørne i Østgrønland: En interviewundersøgelse om forekomst og fangst, 1999. Teknisk Rapport Nr. 40. Grønlands Naturinstitut. Nuuk. 94 ppGoogle Scholar
  55. Siegel S (1956) Nonparametric statistics for the behavioral sciences. McGraw-Hill Book Company, Inc., New York, p 312Google Scholar
  56. Stirling I, Derocher AE (2012) Effects of climate warming on polar bears: a review of the evidence. Glob Change Biol 18:2694–2706CrossRefGoogle Scholar
  57. Stirling I, Parkinson CL (2006) Possible effects of climate warming on selected populations of polar bears (Ursus maritimus) in the Canadian Arctic. Arctic 59:261–275Google Scholar
  58. Stirling I, Spencer C, Andriashek D (1989) Immobilization of polar bears (Ursus maritimus) with Telazol in the Canadian Arctic. J Wildl Dis 25:159–168CrossRefPubMedGoogle Scholar
  59. Therneau T (2013) A package for survival analysis in S. R package version 2.37-4, http://CRAN.R-project.org/package=survival
  60. Vibe C (1967) Arctic animals in relation to climatic fluctuations. Meddr Grønland 170:1–227Google Scholar
  61. Vongraven D, Aars J, Amstrup S, Atkinson SN, Belikov S, Born EW, DeBruyn TD, Derocher AE, Durner G, Gill M, Lunn N, Obbard ME, Omelak J, Ovsyanikov N, Peacock E, Richardson E, Sahanatien V, Stirling I, Wiig Ø (2012) A circumpolar monitoring framework for polar bears. Ursus Monograph Series 5(12):1–66CrossRefGoogle Scholar
  62. Wiig Ø (1995) Distribution of polar bears (Ursus maritimus) in the Svalbard area. J Zool (London) 237:515–529CrossRefGoogle Scholar
  63. Wiig Ø, Born EW, Toudal Pedersen L (2003) Movement of female polar bears (Ursus maritimus) in the East Greenland pack ice. Polar Biol 26:509–516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kristin L. Laidre
    • 1
    • 2
  • Erik W. Born
    • 2
  • Patrick Heagerty
    • 3
  • Øystein Wiig
    • 4
  • Harry Stern
    • 1
  • Rune Dietz
    • 5
  • Jon Aars
    • 6
  • Magnus Andersen
    • 6
  1. 1.Polar Science Center, Applied Physics LaboratoryUniversity of WashingtonSeattleUSA
  2. 2.Greenland Institute of Natural ResourcesNuukGreenland
  3. 3.Department of BiostatisticsUniversity of WashingtonSeattleUSA
  4. 4.National Centre for Biosystematics, Natural History MuseumUniversity of OsloOsloNorway
  5. 5.Department of Bioscience, Arctic Research CentreAarhus UniversityRoskildeDenmark
  6. 6.Norwegian Polar InstituteTromsøNorway

Personalised recommendations