Advertisement

Polar Biology

, Volume 38, Issue 6, pp 861–877 | Cite as

Distribution and composition of the epibenthic megafauna north of Svalbard (Arctic)

  • M. Sswat
  • B. Gulliksen
  • I. Menn
  • A. K. Sweetman
  • D. Piepenburg
Original Paper

Abstract

Benthic communities north of Svalbard are less investigated than in other Arctic shelf regions, as this area was covered by sea-ice during most of the year. Improving our knowledge on this region is timely, however, since climate change is strongly evident there, particularly with regard to the extent of sea-ice decline and its huge ecological impact on all marine biota, including the benthos. Moreover, longer ice-free periods will certainly lead to an increase in human activity levels in the area, including bottom trawling. In two adjacent shelf and slope regions off northern Svalbard, we studied the composition of epibenthic megafauna and seafloor habitat structures by analyzing seabed images taken with both still and video cameras. In addition, we also used an Agassiz trawl to catch epibenthic organisms for ground-truthing seabed-image information. A wide variety of mostly sessile organisms 141 epibenthic taxa were identified in the images. The brittle star Ophiura sarsii and the soft coral Gersemia rubiformis were the most common species. At all stations >300 m in depth, evidence of trawling activities was detected at the seabed. The distribution of the benthic fauna in the study area exhibited a clear depth zonation, mainly reflecting depth-related differences in seabed composition. We conclude that natural factors determining the composition of the seafloor mostly affect the distribution and composition of epibenthic assemblages. Anthropogenic impact indicated by the trawl scours found is likely also important at smaller spatial scales.

Keywords

Arctic Svalbard Epibenthic megafauna Depth Zonation Community structure Trawling 

Notes

Acknowledgments

We would like to thank all the helping hands from Greenpeace, the Institute for Polar Ecology of the University of Kiel (Germany), the University Centre of Svalbard (UNIS) (Norway) and the students from UNIS course AB-321, as well as the University of Tromsø (Norway) and Akvaplan-NIVA (Norway). We are especially grateful to the scientists helping us with identifying the organisms and providing information on the region around Svalbard, especially J. Berge, T. Brattegard, S. Cochrane, P. Kuklinski, A. Plotkin, P. Renaud, A.H. Tandberg and M. Włodarska-Kowalczuk. The study was funded by Greenpeace (Germany). Finally, we would like to thank the three reviewers who provided very valuable advice that helped a lot in the revision of the original manuscript.

Supplementary material

300_2015_1645_MOESM1_ESM.pdf (189 kb)
Online Resource 1: Presence–absence data of all benthic taxa identified in seabed images and Agassiz trawl catches taken north of Svalbard in 2010/2011 (PDF 188 kb)

References

  1. ACIA (2004) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  2. Ambrose WG Jr, Clough LM, Tilney PR, Beer L (2001) Role of echinoderms in benthic remineralization in the Chukchi Sea. Mar Biol 139:937–949CrossRefGoogle Scholar
  3. Antipova TV (1975) Distribution of benthos biomass in the Barents Sea. PINRO Proc 35:121–124Google Scholar
  4. Appeltans W, Bouchet P, Boxshall G, De Broyer C, de Voogd N, et al. (2012) World register of marine species. http://www.marinespecies.org. Accessed 20 June 2013
  5. Bergmann M, Dannheim J, Bauerfeind E, Klages M (2009) Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep-Sea Res I 56:408–424CrossRefGoogle Scholar
  6. Bergmann M, Soltwedel T, Klages M (2011) The interannual variability of megafaunal assemblages in the Arctic deep sea: preliminary results from the HAUSGARTEN observatory (79 N). Deep-Sea Res I 58:711–723CrossRefGoogle Scholar
  7. Beukema JJ, Cadée GC, Dekker R (2002) Zoobenthic biomass limited by phytoplankton abundance: evidence from parallel changes in two long-term data series in the Wadden Sea. J Sea Res 48:111–125CrossRefGoogle Scholar
  8. Blacker RW (1957) Benthic animals as indicators of hydrographic conditions and climate change in Svalbard waters. Fish Invest Ser 2:1–59Google Scholar
  9. Blacker RW (1965) Recent changes in the benthos of the West Spitsbergen fishing grounds. Intern Comm Northw Atl Fish Spec Pub 6:791–794Google Scholar
  10. Budaeva NE, Mokievsky VO, Soltwedel T, Gebruk AV (2008) Horizontal distribution patterns in the Arctic deep-sea macrobenthic communities. Deep-Sea Res I 55:1167–1178CrossRefGoogle Scholar
  11. Carroll ML, Cochrane S, Fieler R, Velvin R, White P (2003) Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques. Aquaculture 226:165–180CrossRefGoogle Scholar
  12. Carroll ML, Denisenko SG, Renaud PE, Ambrose WG (2008) Benthic infauna of the seasonally ice-covered western Barents Sea: patterns and relationships to environmental forcing. Deep-Sea Res II 55:2340–2351CrossRefGoogle Scholar
  13. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  14. Cochrane S, Denisenko SG, Renaud PE, Emblow CS, Ambrose WG, Ellingsen IH, Skarðhamar J (2009) Benthic macrofauna and productivity regimes in the Barents Sea—ecological implications in a changing Arctic. J Sea Res 61:222–233CrossRefGoogle Scholar
  15. Curtis MA (1975) The marine benthos of Arctic and sub-Arctic continental shelves. a review of regional studies and their general results. Polar Rec 17:595–626CrossRefGoogle Scholar
  16. Fautin DG (2012) Hexacorallians of the World. http://geoportal.kgs.ku.edu/hexacoral/anemone2/index.cfm. Accessed 20 Feb 2012
  17. Feder HM, Foster NR, Jewett SC, Weingartner TJ, Baxter R (1994) Mollusks in the northeastern Chukchi Sea. Arctic 47:145–163CrossRefGoogle Scholar
  18. Graf G (1992) Benthic-pelagic coupling: a benthic view. Oceanogr Mar Biol Annu Rev 30:149–190Google Scholar
  19. Grebmeier JM, Barry JP (1991) The influence of oceanographic processes on pelagic–benthic coupling in polar regions: a benthic perspective. J Mar Syst 2:495–518CrossRefGoogle Scholar
  20. Grebmeier JM, McRoy CP, Feder HM (1988) Pelagic–benthic coupling on the shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic biomass. Mar Ecol Prog Ser 48:57–67CrossRefGoogle Scholar
  21. Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331–361CrossRefGoogle Scholar
  22. Gröger J, Rumohr H (2006) Modelling and forecasting long-term dynamics of western Baltic macrobenthic fauna in relation to climate signals and environmental change. Neth J Sea Res 55:266–277CrossRefGoogle Scholar
  23. Gulliksen B, Svensen E (2004) Svalbard and life in polar oceans. Kom Forlag, OsloGoogle Scholar
  24. Gulliksen B, Palerud R, Brattegard T, Sneli J-A (1999) Distribution of marine benthic macro-organisms at Svalbard (including Bear Island) and Jan Mayen. Nor Dir Nat Manag, OsloGoogle Scholar
  25. Hiscock K (1996) Marine nature conservation review: rationale and methods. Joint Nature Conservation Committee, PeterboroughGoogle Scholar
  26. Holte B, Gulliksen B (1998) Common macrofaunal dominant species in the sediments of some north Norwegian and Svalbard glacial fjords. Polar Biol 19:375–382CrossRefGoogle Scholar
  27. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg SA, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  28. Hoste E, Vanhove S, Schewe I, Soltwedel T, Vanreusel A (2007) Spatial and temporal variations in deep-sea meiofauna assemblages in the Marginal Ice Zone of the Arctic Ocean. Deep-Sea Res I 54:109–129CrossRefGoogle Scholar
  29. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  30. Josefson AB (1987) Large-scale patterns of dynamics in subtidal macrozoobenthic assemblages in the Skagerrak: effects of a production-related factor? Mar Ecol Prog Ser 38:13–23CrossRefGoogle Scholar
  31. Kaiser MJ, Clarke KR, Hinz H, Austen MCV, Somerfield PJ, Karakassis I (2006) Global analysis of response and recovery of benthic biota to fishing. Mar Ecol Prog Ser 311:1–14CrossRefGoogle Scholar
  32. Kendall MA, Widdicombe S, Weslawski JM (2003) A multi-scale study of the biodiversity of the benthic infauna of the high latitude Kongsfjord, Svalbard. Polar Biol 26:383–388Google Scholar
  33. Konar B, Iken K (2005) Competitive dominance among sessile marine organisms in a high Arctic boulder community. Polar Biol 29:61–64CrossRefGoogle Scholar
  34. Kröncke I (1995) Long term changes in North Sea benthos. Senckenb Marit 26:73–80Google Scholar
  35. Kröncke I, Dippner JW, Heyen H, Zeiss B (1998) Long-term changes in macrofaunal communities off Norderney (East Frisia, Germany) in relation to climate variability. Mar Ecol Prog Ser 167:25–36CrossRefGoogle Scholar
  36. Kröncke I, Zeiss B, Rensing C (2001) Long-term variability in macrofauna species composition off the island of Norderney (East-Frisia, Germany) in relation to changes in climatic and environmental conditions. Senckenb Marit 31:65–82CrossRefGoogle Scholar
  37. Levinton J (1992) The big bang of animal evolution. Sci Am 267:84–91CrossRefPubMedGoogle Scholar
  38. Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol 24:512–522CrossRefGoogle Scholar
  39. Martin JH, Knauer GA, Karl DM (1987) Vertex: carbon cycling in the northeast Pacific. Deep-Sea Res 34:267–285CrossRefGoogle Scholar
  40. Moen FE, Svensen E (2004) Marine fish and invertebrates of Northern Europe. AquaPressGoogle Scholar
  41. Onarheim IH, Smedsrud LH, Ingvaldsen RB, Nilsen F (2014) Loss of sea ice during winter north of Svalbard. Tellus A 66:23933CrossRefGoogle Scholar
  42. Palomares MLD, Pauly D (eds) (2014) SeaLifeBase, version (01/2012). Pandalus borealis. http://www.org. Accessed 12 Feb 2014
  43. Pearson TH, Barnett PRO (1987) Long-term changes in benthic populations in some west European coastal areas. Estuaries 10:220–226CrossRefGoogle Scholar
  44. Pearson TH, Mannvik HP (1998) Long-term changes in the diversity and faunal structure of benthic communities in the northern North Sea: natural variability or induced instability? Hydrobiologia 376:317–329CrossRefGoogle Scholar
  45. Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16:229–331Google Scholar
  46. Perry RI, Curry P, Brander K, Jennings S, Möllmann C, Planque B (2010) Sensitivity of marine systems to climate and fishing: concepts, issues and management responses. J Mar Syst 79:427–435CrossRefGoogle Scholar
  47. Piepenburg D (2005) Recent research on Arctic benthos: common notions need to be revised. Polar Biol 28:733–755CrossRefGoogle Scholar
  48. Piepenburg D, Schmid MK (1996) Brittle star fauna (Echinodermata: ophiuroidea) of the Arctic north-western Barents Sea: composition, abundance, biomass and spatial distribution. Polar Biol 16:383–392CrossRefGoogle Scholar
  49. Piepenburg D, Archambault P, Ambrose WG Jr, Blanchard A, Bluhm BA, Carroll ML, Conlan K, Cusson M, Feder HM, Grebmeier JM, Lévesque M, Petryashev V, Sejr M, Sirenko B, Włodarska-Kowalczuk M (2011) Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas. Mar Biodiv 41:51–70CrossRefGoogle Scholar
  50. Reise K, Schubert A (1987) Macrobenthic turnover in the subtidal Wadden Sea: the Norderaue revisited after 60 years. Helgoland Mar Res 41:69–82Google Scholar
  51. Renaud PE, Carroll ML, Ambrose WG Jr (2007) Effects of global warming on Arctic sea-floor communities and its consequences for higher trophic levels. In: Duarte CM, Agustí S (eds) Impacts of global warming on polar ecosystem. Fundación BBVA, Bilbao, pp 141–177Google Scholar
  52. Renaud PE, Morata N, Carroll ML, Denisenko SG, Reigstad M (2008) Pelagic–benthic coupling in the western Barents Sea: processes and time scales. Deep-Sea Res II 55:2372–2380CrossRefGoogle Scholar
  53. Rosenberg R (1995) Benthic marine fauna structured by hydrodynamic processes and food availability. Neth J Sea Res 34:303–317CrossRefGoogle Scholar
  54. Sakshaug E (2004) Primary and secondary production in the Arctic Seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 57–81CrossRefGoogle Scholar
  55. Smith CJ, Rumohr H (2005) Imaging techniques. In: Eleftjeriou A, McIntyre A (eds) Methods for the study of marine benthos, 3rd edn. Blackwell, Oxford, pp 87–111CrossRefGoogle Scholar
  56. Snelgrove PVR, Butman CA (1994) Animal-sediment relationships revisited: cause versus effect. Oceanogr Mar Biol Annu Rev 32:111–177Google Scholar
  57. Soltwedel T, Bauerfeind E, Bergmann M, Budaeva N, Hoste E, Jaeckisch N, Juterzenka K, Matthießen J, Mokievsky V, Nöthig E, Quéric N, Sablotny B, Sauter E, Schewe I, Urban-Malinga B, Wegner J, Wlodarska-Kowalczuk M, Klages M (2005) HAUSGARTEN: multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean. Oceanography 18:46–61CrossRefGoogle Scholar
  58. Soltwedel T, Jaeckisch N, Ritter N, Hasemann C, Bergmann M, Klages M (2009) Bathymetric patterns of megafaunal assemblages from the arctic deep-sea observatory HAUSGARTEN. Deep-Sea Res I 56:1856–1872CrossRefGoogle Scholar
  59. Starmans A, Gutt J, Arntz WE (1999) Mega-epibenthic communities in Arctic and Antarctic shelf areas. Mar Biol 135:269–280CrossRefGoogle Scholar
  60. Stiansen JE, Korneev O, Titov O, Arneberg P, Filin A, Hansen JR, Høines Å, Marasaev S (eds) (2009) Joint Norwegian–Russian environmental status 2008. Report on the Barents Sea ecosystem. Part II: complete report. IMR/PINRO Jt Rep Ser 2009(3):1–375Google Scholar
  61. Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288:260–265CrossRefGoogle Scholar
  62. Sweetman A, Chapman A (2011) First observations of jelly-falls at the seafloor in a deep-sea fjord. Deep-Sea Res I 58:1206–1211CrossRefGoogle Scholar
  63. Teichert S, Woelkerling W, Rüggeberg A, Wisshak M, Piepenburg D, Meyerhöfer M, Form A, Büdenbender J, Freiwald A (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80 31′N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago). Phycologia 51:371–390CrossRefGoogle Scholar
  64. Tunberg BG, Nelson WG (1998) Do climatic oscillations influence cyclical patterns of soft bottom macrobenthic communities on the Swedish west coast? Mar Ecol Progr Ser 170:85–94CrossRefGoogle Scholar
  65. Underwood AJ (1996) Detection, interpretation, prediction and management of environmental disturbances: some roles for experimental marine ecology. J Exp Mar Biol Ecol 200:1–27CrossRefGoogle Scholar
  66. van Oevelen D, Bergmann M, Soetaert K, Bauerfeind E, Hasemann C, Klages M, Schewe I, Soltwedel T, Budaeva N (2011) Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait). Deep-Sea Res I 58:1069–1083CrossRefGoogle Scholar
  67. Wassmann P, Reigstad M, Haug T, Rudels B, Carroll ML, Hop H, Gabrielsen GW, Falk-Petersen S, Denisenko SG, Arashkevich E, Slagstad D, Pavlova O (2006) Food webs and carbon flux in the Barents Sea. Progr Oceanogr 71:232–287CrossRefGoogle Scholar
  68. Weslawski JM, Wlodarska-Kowalczuk M, Legezynska J (2003) The occurrence of soft bottom macrofauna along the depth gradient in the High Arctic, 79 N. Pol Polar Res 23:73–88Google Scholar
  69. Whittington RJ, Forsberg CF, Dowdeswell JA (1997) Seismic and side-scan sonar investigations of recent sedimentation in an ice-proximal glacimarine setting, Kongsfjorden, north–west Spitsbergen. In: Davies TA et al (eds) Glaciated continental margins—an atlas of acoustic images. Chapman and Hall, London, pp 175–178CrossRefGoogle Scholar
  70. Wlodarska-Kowalczuk M, Pearson TH (2004) Soft-bottom macrobenthic faunal associations and factors affecting species distributions in an Arctic glacial fjord (Kongsfjord, Spitsbergen). Polar Biol 27:155–167CrossRefGoogle Scholar
  71. Wlodarska-Kowalczuk M, Weslawski JM, Kotwicki L (1998) Spitsbergen glacial bays macrobenthos—a comparative study. Polar Biol 20:66–73CrossRefGoogle Scholar
  72. Zenkevich LA (1963) The biology of the seas of the USSR. Academy of Science of the USSR, MoscowGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Sswat
    • 1
    • 6
  • B. Gulliksen
    • 2
  • I. Menn
    • 3
  • A. K. Sweetman
    • 4
  • D. Piepenburg
    • 1
    • 5
  1. 1.Department of Polar Ecology, Institute for Ecosystem ResearchUniversity of KielKielGermany
  2. 2.Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsøTromsöNorway
  3. 3.Greenpeace GermanyHamburgGermany
  4. 4.International Research Institute of StavangerRandabergNorway
  5. 5.Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  6. 6.GEOMAR, Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations