Polar Biology

, Volume 38, Issue 5, pp 689–697 | Cite as

Phylogeny of ulotrichalean algae from extreme high-altitude and high-latitude ecosystems

  • S. K. SchmidtEmail author
  • J. L. Darcy
Original Paper


Photosynthetic microbes are the dominant primary producers in plant-free high-elevation and high-latitude ecosystems, but we know very little about the terrestrial algae that are found in these systems. Here, we show that terrestrial algae in the Ulotrichales are the dominant 18S algal phylotypes (in terms of relative abundance) in culture-independent studies of geologically similar but geographically distant periglacial sites in the mountains of Central Alaska and the high Himalayas. We further show that these ulotrichalean algae are closely related (using 18S, ITS/5.8S data sets) to several cultured algae from Antarctica and to the dominant ITS algal phylotypes in a recent study of newly deglaciated sediments near the Damma Glacier in Switzerland. Our results further indicate that ulotrichalean algae may play a previously unrecognized role in rock weathering during the earliest stages of primary succession following glacial retreat, but ecological and physiological studies are needed to test this hypothesis.


Himalayas Denali Endolithic algae Primary succession Transantarctic Mountains 



We thank A. J. King, B.-L. Concienne, M. Mitter, D. Karki, L. Nagy and N. Sherpa for assistance in the field and E. M. Gendron, R. C. Lynch, M. S. Robeson, D. R. Nemergut and K. R. Freeman for laboratory assistance and advice. We also thank Z. R. Schubert for translating German scientific papers. Funding was provided by the USAF Office of Scientific Research (FA9550-14-1-0006) and NSF grants for studying dust on snow (EAR-1124576), microbial community assembly (DEB-1258160), and the LTER program (DEB-1027341). GenBank accession numbers for the new Alaskan sequences are KM870604–KM870776.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  2. Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. doi: 10.1038/ncomms1167 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Björk RG, Molau U (2007) Ecology of alpine snowbeds and the impact of global change. Arct Antarct Alp Res 39:34–43CrossRefGoogle Scholar
  4. Bold HC (1958) Three new chlorophycean algae. Am J Bot 45:737–743CrossRefGoogle Scholar
  5. Borin S, Ventura S, Tambone F, Mapelli F, Schubotz F, Brusetti L, Scaglia B, D’Acqui LP, Solheim B, Turicchia S, Marasco R, Hinrichs K-U, Baldi F, Adani F, Daffonchio D (2010) Rock weathering creates oases of life in a high Arctic desert. Environ Microbiol 12:293–303PubMedCrossRefGoogle Scholar
  6. Broady PA (1982) New records of Chlorophycean micro-algae cultured from Antarctic terrestrial habitats. Nova Hedwigia 36:445–484Google Scholar
  7. Brunner I, Plotze M, Rieder SR, Zumsteg A, Furrer G, Frey B (2011) Pioneering fungi from the Damma glacier forefield in the Swiss Alps can promote granite weathering. Geobiology 9:266–279PubMedCrossRefGoogle Scholar
  8. Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of the Antarctic dry valley soils. Nat Rev Microbiol 8:129–138PubMedCrossRefGoogle Scholar
  10. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270Google Scholar
  11. Chappell DF, O’Kelly CJ (1991) Ultrastructure and taxonomy of the Antarctic terrestrial alga Trichosarcina mucosa (Broady) comb. nov. (Ulotrichales, Chlorophyta). Cryptogam Bot 2/3:252–257Google Scholar
  12. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B 345:101–118CrossRefGoogle Scholar
  13. Concienne B-L (2011) Biogeochemical and geochemical characterization of the foreland of the Middle Fork Toklat Glacier, Denali National Park and Preserve. Master’s thesis University of Colorado, BoulderGoogle Scholar
  14. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microbiol 75:735–747PubMedCentralPubMedCrossRefGoogle Scholar
  15. Csejtey B Jr, Mullen MW, Cox DP, Stricker GD (1992) Geology and geochronology of the Healy quadrangle, south-central Alaska. U.S Geological Survey, Miscellaneous Investigations Series I-1961:1–63Google Scholar
  16. Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK (2011) Global distribution of Polaromonas phylotypes—evidence for a highly successful dispersal capacity. PLoS One 6:e23742. doi: 10.1371/journal.pone.0023742 PubMedCentralPubMedCrossRefGoogle Scholar
  17. De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc B 276:3591–3599PubMedCentralPubMedCrossRefGoogle Scholar
  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  19. Elven R (1980) The Omnsbreen glacier nunataks—a case study of plant immigration. Nor J Bot 27:1–16Google Scholar
  20. Faegri K (1963) Problems of immigration and dispersal of the Scandinavian flora. In: Løve A, Løve D (eds) North Atlantic biota and their history. Pergamon Press, Oxford, pp 221–232Google Scholar
  21. Fell JW, Scorzettia G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biol Biochem 38:3107–3119CrossRefGoogle Scholar
  22. Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK (2009a) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci USA 106:18315–18320PubMedCentralPubMedCrossRefGoogle Scholar
  23. Freeman KR, Pescador MY, Reed SC, Costello EK, Robeson MS, Schmidt SK (2009b) Soil CO2 flux and photoautotrophic community composition in high-elevation, “barren” soils. Environ Microbiol 11:674–686PubMedCrossRefGoogle Scholar
  24. Frey B, Rieder S, Brunner I, Plötze M, Koetzsch S, Lapanje A, Brandl H, Furrer G (2010) Weathering-associated bacteria from the Damma Glacier forefield: physiological capabilities and impact on granite dissolution. Appl Environ Microbiol 76:4788–4796PubMedCentralPubMedCrossRefGoogle Scholar
  25. Frey B, Bühler L, Schmutz S, Zumsteg A, Furrer G (2013) Molecular characterization of phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps. Environ Res Lett 8:015033. doi: 10.1088/1748-9326/8/1/015033 CrossRefGoogle Scholar
  26. Friedl T (1996) Evolution of the polyphyletic genus Pleurastrum (Chlorophyta): inferences from nuclear-encoded ribosomal DNA sequences and motile cell ultrastructure. Phycologia 35:456–469CrossRefGoogle Scholar
  27. Friedl T, O’Kelly CJ (2002) Phylogenetic relationships of green algae assigned to the genus Planophila (Chlorophyta): evidence from 18S rDNA sequence data and ultrastructure. Eur J Phycol 37:373–384CrossRefGoogle Scholar
  28. Fuchs G, Widder RW, Tuladhar R (1988) Contributions to the geology of the Annapurna Range (Manang area, Nepal). Jahrb Geol Bundesanst 131:593–607Google Scholar
  29. Fučíková K, Rada JC, Lewis LA (2011) The tangled taxonomic history of Dictyococcus, Bracteacoccus and Pseudomuriella (Chlorophyceae, Chlorophyta) and their distinction based on a phylogenetic perspective. Phycologia 50:422–429CrossRefGoogle Scholar
  30. Garcia-Pichel F, Ramírez-Reinat E, Gao Q (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proc Natl Acad Sci USA 107:21749–21754PubMedCentralPubMedCrossRefGoogle Scholar
  31. Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202PubMedCrossRefGoogle Scholar
  32. Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic). Microb Ecol 50:396–407PubMedCrossRefGoogle Scholar
  33. King AJ, Freeman KR, McCormick KF, Lozupone CA, Knight R, Schmidt SK (2010a) Biogeography and habitat modelling of high-alpine bacteria. Nat Commun 1:53. doi: 10.1038/ncomms1055 PubMedCrossRefGoogle Scholar
  34. King AJ, Karki D, Nagy L, Racoviteanu A, Schmidt SK (2010b) Microbial biomass and activity in high elevation (>5100 meters) soils of the Annapurna and Sagarmatha regions of the Nepalese Himalayas. Himal J Sci 6:11–18Google Scholar
  35. Lazzaro A, Abegg C, Zeyer J (2009) Bacterial community structure of glacier forefields on siliceous and calcareous bedrock. Eur J Soil Sci 60:860–870CrossRefGoogle Scholar
  36. Ley RE et al (2004) Microbial population dynamics in an extreme environment: controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry 68:313–335CrossRefGoogle Scholar
  37. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCentralPubMedCrossRefGoogle Scholar
  38. Lynch RC, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J Geophys Res 117:G02028. doi: 10.1029/2012JG001961 Google Scholar
  39. Marcus MG, Brazel AJ (1996) Environmental effects on radiation fluxes during the pre-monsoon, 4170–5525 m, Annapurna Region, Nepal. Mt Res Dev 16:221–234CrossRefGoogle Scholar
  40. Mataloni G, Tell G, Wynn-Williams DD (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biol 23:205–211CrossRefGoogle Scholar
  41. Mladenov N, Williams MW, Schmidt SK, Cawley K (2012) Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains. Biogeosciences 9:3337–3355CrossRefGoogle Scholar
  42. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in unvegetated, recently-deglaciated soils. Microb Ecol 53:110–122PubMedCrossRefGoogle Scholar
  43. Nichols HW, Bold HC (1965) Trichosarcina polymorpha gen. et sp. nov. J Phycol 1:34–38CrossRefGoogle Scholar
  44. Nilsson RH, Ryberg M, Sjökvist E, Abarenkov K (2011) Rethinking taxon sampling in the light of environmental sequencing. Cladistics 27:197–203CrossRefGoogle Scholar
  45. O’Kelly CJ, Wysor B, Bellows WK (2004) Collinsiella (Ulvophyceae, Chlorophyta) and other ulotrichalean taxa with shell-boring sporophytes form a monophyletic clade. Phycologia 43:41–49CrossRefGoogle Scholar
  46. Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi: 10.1371/journal.pone.0009490 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Řeháková K, Chlumská Z, Doležal J (2011) Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb Ecol 62:337–346PubMedCrossRefGoogle Scholar
  48. Sattin SR, Cleveland CC, Hood E, Reed SC, King AJ, Schmidt SK, Robeson MS, Nemergut DR (2009) Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol 47:673–681PubMedCrossRefGoogle Scholar
  49. Schmidt SK, Nemergut DR, Miller AE, Freeman KR, King AJ, Seimon A (2009) Microbial activity and diversity during extreme freeze–thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13:807–816PubMedCrossRefGoogle Scholar
  50. Schmidt SK, Lynch RC, King AJ, Karki D, Robeson MS, Nagy L, Williams MW, Mitter MS, Freeman KR (2011) Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proc R Soc B 278:702–708PubMedCentralPubMedCrossRefGoogle Scholar
  51. Schmidt SK, Nemergut DR, Todd BT, Lynch RC, Darcy JL, Cleveland CC, King AJ (2012) A simple method for determining limiting nutrients for photosynthetic crusts. Plant Ecol Divers 5:513–519CrossRefGoogle Scholar
  52. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116CrossRefGoogle Scholar
  53. Skaloud P, Nedbalova L, Elster J, Komarek J (2013) A curious occurrence of Hazenia broadyi spec. nova in Antarctica and the review of the genus Hazenia (Ulotrichales, Chlorophyceae). Polar Biol 36:1281–1291CrossRefGoogle Scholar
  54. Strauss SL, Garcia-Pichel F, Day TA (2012) Soil microbial carbon and nitrogen transformations at a glacial foreland on Anvers Island, Antarctic Peninsula. Polar Biol 35:1459–1471CrossRefGoogle Scholar
  55. Swan LW (1992) The aeolian biome, ecosystems of the Earth’s extremes. Bioscience 42:262–270CrossRefGoogle Scholar
  56. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralPubMedCrossRefGoogle Scholar
  57. Tupa DD (1974) An investigation of certain chaetophoralean algae. Beih Nova Hedwigia 46:1–155Google Scholar
  58. Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 321–340Google Scholar
  59. Vischer W (1933) Über einige kritische Gattungen und die Systematik der Chaetophorales. Beih Botan Centralbl 51:1–100Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations