Advertisement

Polar Biology

, Volume 39, Issue 1, pp 91–102 | Cite as

Mapping the lithic colonization at the boundaries of life in Northern Victoria Land, Antarctica

  • Laura Zucconi
  • Silvano Onofri
  • Clarissa Cecchini
  • Daniela Isola
  • Caterina Ripa
  • Massimiliano Fenice
  • Sergio Madonna
  • Patricia Reboleiro-Rivas
  • Laura SelbmannEmail author
Original Paper

Abstract

The endolithic microbial communities of the Antarctic represent a borderline lifestyle in the most hostile ice-free areas of the continent. The extreme adaptation of microbes in these communities renders them very sensitive to environmental changes. To date, the actual distribution of these communities has never been investigated; yet, this information would define the geographic limits for life at present and supply a useful tool for monitoring any possible future variation related to climate change. In this study, most of the outcrops of Northern and of one site in Southern Victoria Land were recorded by altitudinal and sea distance gradients. The presence of endolithic life was determined by in situ observation, by microscopic observation of rock fragments in the laboratory, and, for doubtful samples, by culture experiment. Colonizers were present in more than 87 % of the visited sites. The presence of lithic life in Victoria Land appears to be wider than that reported 14 years earlier. The colonization trend follows climatic variation, with epiliths prevailing in coastal sites and decreasing towards the interior, while chasmoendoliths and cryptoendoliths increase and become predominant from the coast towards the inland sites. Typical cryptoendolithic colonization was exclusive on porous rocks as sandstone, chasmoendolithic colonization occurred even in less porous but translucent rocks as granite and quartz. Multivariate analysis of the combined results clearly indicates the pivotal role of the rock type in the colonization of endolithic micro-organisms; sandstone allows lithobionts to push themselves towards areas characterized by harsher conditions.

Keywords

Climate change Extreme conditions Endolithic communities Lithobionths Microbial colonization 

Notes

Acknowledgments

The authors thank the Italian National Program of Antarctic Researches (PNRA) for the financial support to the project. Climatic data were obtained from the server http://www.climantartide.it of the Italian National Research Program in Antarctica (PNRA Copyright—Italian National Research Program in Antarctica—all rights reserved); a special thank to Drs. Paolo Grigioni, Andrea Pellegrini, and Claudio Scarchilli (ENEA) for their support in retrieving Antarctic climate data. The authors are grateful to Dr. Steven Emslie (University of North Carolina Wilmington) for accurate English revision of the text. The authors also thank all the Antarctic colleagues participating in the XXVI Italian Antarctic expedition for their invaluable help and support in the collection activity: Dr. Fabrizio Balsamo and Gianluca Vignaroli (Dept. of Geological Sciences, University of Roma Tre); Prof. Roberto Guidetti (University of Modena and Reggio Emilia); the Alpine guides Giovanni Amort, Giancarlo Graziosi and Roberto Guadagnin; the Head of expedition Alberto Della Rovere.

References

  1. Broady PA (1981) The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. Brit Phycol J 16:231–240CrossRefGoogle Scholar
  2. Capponi G, Meccheri M, Pertusati PC, Castelli D, Crispini L, Kleinschmidt G, Lombardo B, Montrasio A, Musumeci G, Oggiano G, Ricci CA, Roland NW, Salvini F, Skinner DNB, Tessensohn F (1997) Mount Murchison Quadrangle (Victoria Land). Antarctic Geological 1:250 000 Map Series. Museo Nazionale dell’AntartideGoogle Scholar
  3. Carmignani L, Ghezzo C, Gosso C, Lombardo B, Meccheri M, Montrasio A, Pertusati PC, Salvini F (1989) Geological map of the area between David and Mariner Glaciers, Victoria Land—Antarctica. Programma Nazionale di Ricerche in Antartide, FirenzeGoogle Scholar
  4. Casnedi R, Di Giulio A, Rossi A (1994) The sandstones of the Beacon Supergroup near Terra Nova Bay (Northern Victoria Land, Antarctica): preliminary results of facies and petrographic analyses. Terra Antarct 1:92–95Google Scholar
  5. Cockell CS, McKay CP, Omelon C (2003) Polar endoliths—an anti-correlation of climatic extremes and microbial biodiversity. Int J Astrobiol 1:305–310CrossRefGoogle Scholar
  6. De Los Rios A, Wierzchos J, Sancho LG, Green TG, Ascaso C (2005) Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist 37:383–395CrossRefGoogle Scholar
  7. De Los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395CrossRefGoogle Scholar
  8. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev Soc 80:45–72CrossRefGoogle Scholar
  9. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  10. Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol 7:273–287PubMedCrossRefGoogle Scholar
  11. Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69PubMedCrossRefGoogle Scholar
  12. Golubic S, Friedmann EI, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478Google Scholar
  13. Hogg ID, Wall DH (2011) Global change and Antarctic terrestrial biodiversity. Polar Biol 34:1625–1627CrossRefGoogle Scholar
  14. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  15. McKay CP, Nienow JA, Meyer MA, Friedmann EI (1993) Continuous nanoclimate data (1985–1988) from the ross desert (McMurdo Dry Valleys) cryptoendolithic microbial ecosystem. In: Bromwich DH, Stearn CR (eds) Antarctic meteorology and climatology: studies based on automatic weather stations. Antarct Res Ser 61:201–207Google Scholar
  16. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412Google Scholar
  17. Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime. Microb Ecol 16:253–270CrossRefGoogle Scholar
  18. Olech M, Chwedorzewska KJ (2011) The first appearance and establishment of an alien vascular plant in natural habitats on the forefield of a retreating glacier in Antarctica. Antarct Sci 23:153–154CrossRefGoogle Scholar
  19. Omelon CR, Pollard WH, Ferris FG (2007) Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Microb Ecol 54:740–752PubMedCrossRefGoogle Scholar
  20. Onofri S, Friedmann EI (1998) Cryptoendolithic microorganisms in sandstone and pegmatite in the Northern Victoria Land. In: Tamburrini M, D’Avino R (eds) Newsletter of the Italian Biological Research in Antarctica, No 2. Camerino University Press, Camerino, pp 45–51Google Scholar
  21. Onofri S, Selbmann L, Zucconi L, de Hoog GS, de Los Rios A, Ruisi S, Grube M (2007) Fungal associations at the cold edge of life. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Netherlands, pp 735–757CrossRefGoogle Scholar
  22. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32Google Scholar
  23. Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, van den Ende AHGG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20PubMedPubMedCentralCrossRefGoogle Scholar
  24. Selbmann L, Isola D, Fenice F, Zucconi L, Sterflinger K, Onofri S (2012) Potential extinction of Antarctic endemic fungal species as a consequence of Global Warming. Sci Tot Environ 438:127–134CrossRefGoogle Scholar
  25. Turner J, Colwell SR, Marshall GJ, Lachlan-cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laura Zucconi
    • 1
  • Silvano Onofri
    • 1
  • Clarissa Cecchini
    • 1
  • Daniela Isola
    • 1
  • Caterina Ripa
    • 1
  • Massimiliano Fenice
    • 1
  • Sergio Madonna
    • 2
  • Patricia Reboleiro-Rivas
    • 3
  • Laura Selbmann
    • 1
    Email author
  1. 1.Department of Ecological and Biological Sciences (DEB)Università della TusciaViterboItaly
  2. 2.Department of Sciences and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE)Università della TusciaViterboItaly
  3. 3.Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain

Personalised recommendations