Polar Biology

, Volume 38, Issue 5, pp 607–617 | Cite as

Low level of genetic divergence between Harpagifer fish species (Perciformes: Notothenioidei) suggests a Quaternary colonization of Patagonia from the Antarctic Peninsula

  • Mathias HüneEmail author
  • Claudio González-Wevar
  • Elie Poulin
  • Andrés Mansilla
  • Daniel A. Fernández
  • Esteban Barrera-Oro
Original Paper


The evolution of the marine benthic fauna of Antarctica has been shaped by geological and climatic atmospheric factors such as the geographic isolation of the continent and the subsequent installation of the Antarctic Circumpolar Current (ACC). Despite this isolation process, strong biogeographic links still exist between marine fauna from the Antarctic Peninsula and southern South America. Recent studies in different taxa have shown, for example, that shallow benthic organisms with long larval stages maintained contact after the physical separation of the continents and divergence may be associated with the intensification of the ACC in the late Miocene—early Pliocene. In this context, here we performed phylogenetic reconstructions and estimated the level of molecular divergence between congeneric species of Harpagifer, a marine notothenioid from the Antarctic Peninsula (Harpagifer antarcticus) and Patagonia (H. bispinis) using the mitochondrial control region. Phylogenies were reconstructed using Maximum Parsimony and Bayesian Inference, while the divergence time of H. antarcticus and H. bispinis was estimated following a relaxed Bayesian approach and assuming a strict molecular clock hypothesis. According to our estimation, the divergence between H. bispinis and H. antarcticus is more recent than expected if it was associated with the intensification of the ACC during the mid to late Miocene. We propose that climatic and oceanographic changes during the coldest periods of the Quaternary (i.e., Great Patagonian Glaciation, 1–0.9 Ma) and the northward migration of the Antarctic Polar Front may have assisted the colonization of southern South America by Harpagifer, from the Antarctic Peninsula via the Scotia Arc Islands.


mtDNA control region Southern Ocean Antarctic Polar Front Great Patagonian Glaciation Long-distance dispersal 



We would like to thank Christina Cheng for constructive comments on the original manuscript. The following Projects supported this study: MSc thesis project INACH M_10–11 and Institute of Ecology and Biodiversity (IEB) PFB-23-2008.

Supplementary material

300_2014_1623_MOESM1_ESM.pdf (76 kb)
Supplementary material 1 (PDF 75 kb)
300_2014_1623_MOESM2_ESM.fas (25 kb)
Supplementary material 2 (FAS 25 kb)


  1. Aljanabi S, Martínez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucl Acids Res 25:4692–4693PubMedCentralPubMedCrossRefGoogle Scholar
  2. Arntz W, Thatje S, Gerdes D, Gili J-M, Gutt J, Jacob U, Montiel A, Orejas C, Teixidó N (2005) The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Sci Mar 69(Suppl 2):237–269Google Scholar
  3. Aronson R, Thatje S, Clarke A, Peck L, Blake D, Wilga C, Seibel B (2007) Climate change and invisibility of the Antarctic benthos. Annu Rev Ecol Evol S 38:129–154CrossRefGoogle Scholar
  4. Bargelloni L, Ritchie P, Patarnello T, Battaglia B, Lambert D, Meyer A (1994) Molecular evolution at subzero temperature: mitochondrial and nuclear phylogenies of fishes from Antarctica (Suborden Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11(6):854–863PubMedGoogle Scholar
  5. Bargelloni L, Marcato S, Zane L, Patarnello T (2000) Mitochondrial phylogeny of notothenioids: a molecular approach to antarctic fish evolution and biogeography. Syst Biol 49(1):114–129PubMedCrossRefGoogle Scholar
  6. Barker P, Thomas E (2004) Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci Rev 66:143–162CrossRefGoogle Scholar
  7. Barker P, Filipelli G, Florindo F, Martin E, Scher H (2007) Onset and role of the Antarctic Circumpolar Current. Deep-Sea Res Pt II 54:2388–2398CrossRefGoogle Scholar
  8. Brodeur J, Calvo J, Clarke A (2003) Myogenic cell cycle duration in Harpagifer species with sub-Antarctic and Antarctic distributions: evidence for cold compensation. J Exp Biol 206:1011–1016PubMedCrossRefGoogle Scholar
  9. Chen W, Bonillo C, Lecointre G (1998) Phylogeny of the Channichthyidae (Notothenioidei, Teleostei) based on two mitochondrial genes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Milano, pp 287–298CrossRefGoogle Scholar
  10. Cheng C-HC (1998) Origin and mechanism of evolution of antifreeze glycoproteins in polar fishes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Milano, pp 311–328CrossRefGoogle Scholar
  11. Cheng C-HC, Detrich W (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Philos T R Soc B 362:2215–2232CrossRefGoogle Scholar
  12. Cheng C-HC, DeVries A (1991) The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold water fishes. In: di Prisco G (ed) Life under extreme conditions. Springer, Berlin, pp 1–14CrossRefGoogle Scholar
  13. Cheng C-HC, Chen L, Near T, Jin Y (2003) Functional antifreeze glycoprotein genes in temperate-water new Zealand nototheniid fish infer an Antarctic evolutionary origin. Mol Biol Evol 20(11):1897–1908PubMedCrossRefGoogle Scholar
  14. Clark M, Clarke A, Cockell C, Convey P, Detrich HW, Fraser K, Johnston I, Methe B, Murray A, L Peck, Römish K, Rogers A (2004) Antarctic genomics. Comp Funct Genom 5:230–238CrossRefGoogle Scholar
  15. Clark P, Archer D, Pollard D, Blum J, Rial J, Brovkin V, Mix A, Pisias N, Roy M (2006) The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat Sci Rev 25:3150–3184CrossRefGoogle Scholar
  16. Clarke A, Crame JA (1997) Diversity, latitude and time: patterns in the shallow sea. In: Ormond RFG, Gage JD, Angel MV (eds) Marine biodiversity: causes and consequences. Cambridge University Press, Cambridge, pp 122–147CrossRefGoogle Scholar
  17. Clarke A, Johnston I (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11(5):212–218PubMedCrossRefGoogle Scholar
  18. Clarke A, Barnes D, Hodgson D (2005) How isolated is Antarctica? Trends Ecol Evol 1:1–3CrossRefGoogle Scholar
  19. Crame JA (1999) An evolutionary perspectiva on marine faunal connections between southernmost south America and Antarctica. Sci Mar 63(Suppl 1):1–14Google Scholar
  20. Dalziel IW, Lawver L, Pearce J, Barker P, Hastie A, Barfod D, Schenke H-W, Davis M (2013) A potential barrier to deep Antarctic circumpolar flow until the late Miocene? Geology 41:947–950CrossRefGoogle Scholar
  21. DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249PubMedCrossRefGoogle Scholar
  22. Derome N, Chen W, Dettai A, Bonillo C, Lecointre G (2002) Phylogeny of Antarctic dragonfishes (Bathydraconidae, Notothenioidei, Teleostei) and related families based on their anatomy and two mitochondrial genes. Mol Phylogenet Evol 24:139–152PubMedCrossRefGoogle Scholar
  23. Díaz A, Féral J-P, David B, Saucède T, Poulin E (2011) Evolutionary pathways among shallow and deep sea echinoids of the genus Sterechinus in the Southern Ocean. Deep-Sea Res Pt II 58(1–2):205–211CrossRefGoogle Scholar
  24. Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCentralPubMedCrossRefGoogle Scholar
  25. Drummond AJ, Ho S, Phillips M, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5):699–710CrossRefGoogle Scholar
  26. Duhamel G, Hulley P-A, Causse R, Koubbi P, Vacchi M, Pruvost P, Vigetta S, Irisson J-O, Mormède S, Belchier M, Dettaï A, Detrich W, Gutt J, Jones CD, Kock K-H, Lopez LJ, Van de Putte A (2014) Chapter 7. Biogeographic patterns of fish. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz Cd’ et al (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 327–361Google Scholar
  27. Eagles G, Livermore R (2002) Opening history of Powell Basin, Antarctic Peninsula. Mar Geol 185:195–205CrossRefGoogle Scholar
  28. Eastman J (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  29. Eastman J (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107CrossRefGoogle Scholar
  30. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  31. Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  32. Filatov DA (2002) ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624CrossRefGoogle Scholar
  33. Flower B, Kennett J (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeocl 108:537–555CrossRefGoogle Scholar
  34. Fraser C, Nikula R, Spencer H, Waters J (2009) Kelp genes reveal effects of subantarctic sea ice during the last glacial maximum. P Natl Acad Sci USA 106(9):3249–3253CrossRefGoogle Scholar
  35. Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253:769–778PubMedCrossRefGoogle Scholar
  36. Gersonde R, Crosta X, Abelmann A, Armand L (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG last glacial maximum—a circum-Antarctic view based on siliceous microfossil records. Quat Sci Rev 24:869–896CrossRefGoogle Scholar
  37. González-Wevar C, Nakano T, Cañete J, Poulin E (2010) Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol Phylogenet Evol 56:115–124PubMedCrossRefGoogle Scholar
  38. González-Wevar C, Díaz A, Gérard K, Cañete J, Poulin E (2012) Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates. Rev Chil Hist Nat 85:445–456CrossRefGoogle Scholar
  39. Griffiths H, Barnes D, Linse K (2009) Towards a generalized biogeography of the Southern Ocean benthos. J Biogeogr 36:162–177CrossRefGoogle Scholar
  40. Helmuth B, Veit R, Holberton R (1994) Long-distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Mar Biol 120:421–426CrossRefGoogle Scholar
  41. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  42. Hewitt G (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos T R Soc B 359:183–195CrossRefGoogle Scholar
  43. Hureau J (1990) Harpagiferidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 357–363Google Scholar
  44. Janko K, Marshall C, Musilová Z, Van Houdt J, Couloux A, Cruaud C, Lecointre G (2011) Multilocus analyses of an Antarctic fish species flock (Teleostei, Notothenioidei, Trematominae): phylogenetic approach and test of the early-radiation event. Mol Phylogenet Evol 60:305–316PubMedCrossRefGoogle Scholar
  45. Johnston I, Vieira V, Fernandez DA, Abercromby M, Brodeur J, Peck L, Calvo J (2002) Muscle growth in polar fish: a study of Harpagifer species with sub-Antarctic and Antarctic distributions. Fish Sci 68:1023–1028Google Scholar
  46. Kemp A, Grigorov I, Pearce R, Garabato N (2010) Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications. Quat Sci Rev 29:1993–2009CrossRefGoogle Scholar
  47. Kock K, Kellermann A (1991) Reproduction in Antarctic notothenioid fish. Rev Antarct Sci 3(2):125–150Google Scholar
  48. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R, Thompson J, Gibson T, Higgins D (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948PubMedCrossRefGoogle Scholar
  49. Lawver L, Gahagan L, Campbell D (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeocl 198:11–37CrossRefGoogle Scholar
  50. Lear C, Elderfield H, Wilson P (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269–272PubMedCrossRefGoogle Scholar
  51. Lewis A, Marchant D, Ashworth A, Hedena L, Hemming S, Johnson J, Leng M-J, Machlus M, Newton A, Raine J, Willenbring J, Williams M, Wolfe A (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. P Natl Acad Sci USA 105:10676–10680CrossRefGoogle Scholar
  52. Librado P, Rozas J (2009) DnaSp v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  53. Livermore R, Nankivell A, Eagles G, Morries P (2005) Paleogene opening of Drake Passage. Earth Planet Sci Lett 236:459–470CrossRefGoogle Scholar
  54. Lyle M, Gibbs S, Moore T, Rea D (2007) Late Oligocene initiation of the Antarctic Circumpolar Current: evidence from the South Pacific. Geology 35:691–694CrossRefGoogle Scholar
  55. Mackensen A (2004) Changing Southern Ocean paleocirculation and effect on global climate. Antarct Sci 16:369–384CrossRefGoogle Scholar
  56. Matschiner M, Hanel R, Salzburger W (2011) On the origin and trigger of the Notothenioid adaptive radiation. PLoS One 6(4):1–9CrossRefGoogle Scholar
  57. Near T (2004) Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarct Sci 16:37–44CrossRefGoogle Scholar
  58. Near T, Cheng C-HC (2008) Phylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): Inferences from mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 47:832–840PubMedCrossRefGoogle Scholar
  59. Near T, Dornburg A, Kuhn K, Eastman J, Pennington J, Patarnello T, Zame L, Fernández DA, Jones C (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. P Natl Acad Sci USA 109:3434–3439CrossRefGoogle Scholar
  60. Nong GT, Najjar RG, Seidov D, Peterson WH (2000) Simulation of ocean temperature change due to the opening of Drake Passage. Geophys Res Lett 27:2689–2692CrossRefGoogle Scholar
  61. Nybelin O (1947) Antarctic fishes. Scientific results of the Norwegian Antarctic Expeditions 1927–1928 et spp. Nor Vidensk-Akad Oslo Arbok 2(26):1–76Google Scholar
  62. Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603PubMedCrossRefGoogle Scholar
  63. Page T, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826Google Scholar
  64. Patarnello T, Bargelloni L, Varotto V, Battaglia B (1996) Krill evolution and the Antarctic Ocean currents: evidence of vicariant speciation as inferred by molecular data. Mar Biol 126:603–608CrossRefGoogle Scholar
  65. Peck L, Clark M, Clarke A, Cockell C, Convey P, Detrich W III, Fraser K, Johnston I, Methe B, Murray A, Römish K, Rogers A (2005) Genomics: applications to Antarctic ecosystems. Polar Biol 28:351–365CrossRefGoogle Scholar
  66. Pérez AF, Calvo J, Tresguerres M, Luquet C (2003) Aglomerularism in Harpagifer bispinis: a subantarctic notothenioid fish living at reduced salinity. Polar Biol 26:800–805CrossRefGoogle Scholar
  67. Pfuhl H, McCave N (2005) Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth Planet Sci Lett 235:715–728CrossRefGoogle Scholar
  68. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256PubMedCrossRefGoogle Scholar
  69. Poulin E, González-Wevar C, Díaz A, Gérard K, Hüne M (2014) Divergence between Antarctic and South American marine invertebrates: what molecules tell us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Glob Planet Change. doi: 10.1016/j.gloplacha.2014.07.017
  70. Rabassa J (2008) Late Cenozoic glaciations in Patagonia and Tierra del Fuego. In: Rabassa J (ed) Late Cenozoic of Patagonia and Tierra del Fuego. Developments in Quaternary science. Elsevier, Amsterdam, pp 151–204CrossRefGoogle Scholar
  71. Ronquist F, Huelsenbeck J (2003) MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  72. Ronquist F, Huelsenbeck J, Teslenko M (2011) MrBayes (Bayesian analysis of phylogeny), Version 3.2.
  73. Rutshmann S, Matschiner M, Damerau M, Muschick M, Lehmann M, Hanel R, Salzburger W (2011) Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol Ecol 22:4707–4721CrossRefGoogle Scholar
  74. Salzburger W, Ewing G, Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963PubMedCrossRefGoogle Scholar
  75. Scher H, Martin E (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312:428–430PubMedCrossRefGoogle Scholar
  76. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  77. Shevenell A, Kennett J, Lea D (2004) Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305:1766–1770PubMedCrossRefGoogle Scholar
  78. Stankovic A, Spalik K, Kamler E, Borsuk P, Weglenski P (2002) Recent origin of sub-Antarctic notothenioids. Polar Biol 25:203–205Google Scholar
  79. Strugnell J, Rogers A, Prodohl P, Collins M, Allcock A (2008) The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24:1–8CrossRefGoogle Scholar
  80. Thatje S, Hillenbrand C-D, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540PubMedCrossRefGoogle Scholar
  81. Thornhill D, Mahon A, Norenburg J, Halanych K (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117PubMedCrossRefGoogle Scholar
  82. Verducci M, Foresi L, Scott G, Sprovieri M, Lirer F, Pelosi N (2009) The Middle Miocene climatic transition in the Southern Ocean: evidence of paleoclimatic and hydrographic changes at Kerguelen plateau from planktonic foraminifers and stable isotopes. Palaeogeogr Palaeocl 280:371–386CrossRefGoogle Scholar
  83. Waters J, Fraser C, Hewitt G (2013) Founders takes all: density-dependent processes structure biodiversity. Trends Ecol Evol 28(2):78–85PubMedCrossRefGoogle Scholar
  84. White M, Burren P (1992) Reproduction and larval growth of Harpagifer antarcticus Nybelin (Pises, Notothenioidei). Antarct Sci 4:421–430Google Scholar
  85. Wilson N, Schrödl M, Halanych K (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984PubMedCrossRefGoogle Scholar
  86. Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373PubMedCrossRefGoogle Scholar
  87. Zachos J, Quinn T, Salamy K (1996) High resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene–Oligocene climate transition. Paleoceanography 11:251–266CrossRefGoogle Scholar
  88. Zachos J, Pagani L, Sloan E, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693PubMedCrossRefGoogle Scholar
  89. Zachos J, Dickens G, Zeebe R (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283PubMedCrossRefGoogle Scholar
  90. Zhuang X, Cheng C-HC (2010) ND6 gene “Lost” and found: evolution of mitochondrial gene rearrangement in Antarctic Notothenioids. Mol Biol Evol 27(6):1391–1403PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mathias Hüne
    • 1
    • 2
    • 3
    • 4
    Email author
  • Claudio González-Wevar
    • 1
    • 2
    • 5
  • Elie Poulin
    • 1
    • 2
  • Andrés Mansilla
    • 1
    • 3
  • Daniel A. Fernández
    • 6
  • Esteban Barrera-Oro
    • 7
  1. 1.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  2. 2.Laboratorio de Ecología Molecular (LEM), Departamento de Ciencias EcológicasUniversidad de ChileÑuñoaChile
  3. 3.Departamento de Recursos NaturalesUniversidad de MagallanesPunta ArenasChile
  4. 4.Fundación IctiológicaSantiagoChile
  5. 5.GAIA-AntárticaUniversidad de MagallanesPunta ArenasChile
  6. 6.Centro Austral de Investigaciones Científicas (CADIC-CONICET)UshuaiaArgentina
  7. 7.Instituto Antártico ArgentinoBuenos AiresArgentina

Personalised recommendations