Advertisement

Polar Biology

, Volume 38, Issue 4, pp 433–443 | Cite as

Diverse metabolic and stress-tolerance pathways in chasmoendolithic and soil communities of Miers Valley, McMurdo Dry Valleys, Antarctica

  • Sean T. S. Wei
  • Miguel-Angel Fernandez-Martinez
  • Yuki Chan
  • Joy D. Van Nostrand
  • Asuncion de los Rios-Murillo
  • Jill M. Y. Chiu
  • Annapoorna Maitrayee Ganeshram
  • S. Craig Cary
  • Jizhong Zhou
  • Stephen B. Pointing
Original Paper

Abstract

The majority of biomass in the McMurdo Dry Valleys of Antarctica occurs within rocks and soils, but despite the wealth of biodiversity data very little is known about the potential functionality of communities within these substrates. The putative physiological capacity of microbial communities in granite boulders (chasmoendoliths) and soils of a maritime-influenced Antarctic Dry Valleys were interrogated using the GeoChip microarray. Diversity estimates revealed surprisingly high diversity and evenness in both communities, with Chlorobi and Deinococci in soils accounting for major differences between the substrates. Autotrophs were more diverse in chasmoendoliths, and diazotrophs more diverse in soils. Both substrates revealed a previously unappreciated abundance of Halobacteria (Archaea), Ascomycota (Fungi) and Basidiomycoyta (Fungi). The fungi accounted for much of the differences between substrates in metabolic pathways associated with carbon transformations, particularly for aromatic compounds. Nitrogen fixation genes were more common in soils, although nitrogen catabolism genes were abundant in chasmoendoliths. Stress response pathways were more diverse in chasmoendoliths, possibly reflecting greater environmental stress in this exposed substrate compared with subsurface soils. Overall diversity of stress-tolerance genes was markedly lower than that recorded for inland locations where environmental stress is exacerbated. We postulate that the chasmoendolithic community occupies a key role in biogeochemical transformations in Dry Valley systems where granite substrates are abundant among open soils. The findings indicate that a substantial upward revision to estimates of biologically active surfaces in this system is warranted.

Keywords

Antarctica Chasmoendolith Dry Valleys Geochip Stress response 

Notes

Acknowledgments

This study was funded by the Institute for Applied Ecology New Zealand. The development of the GeoChip and associated computational pipelines used in this study was supported by Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) through the US Department of Energy (DE-AC02-05CH11231). J. Zhou and J. D. Van Nostrand’s efforts were supported by the US Department of Energy (DE-SC0004601) and the US National Science Foundation (EF-1065844). The authors are extremely grateful to Antarctica New Zealand for logistics and field support in Antarctica.

References

  1. Arenz BE et al (2006) Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica. Soil Biol Biochem 38:3057–3064CrossRefGoogle Scholar
  2. Bahl J et al (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. doi: 10.1038/ncomms1167 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bottos E et al (2013) Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb Ecol 67:120–128CrossRefPubMedCentralGoogle Scholar
  4. Caruso T et al (2011) Stochastic and deterministic processes interact to determine global biogeography of arid soil bacteria. ISME J 5:1406–1413CrossRefPubMedCentralPubMedGoogle Scholar
  5. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138CrossRefPubMedGoogle Scholar
  6. Chan Y et al (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282CrossRefPubMedGoogle Scholar
  7. Chan Y et al (2013) Functional ecology of an Antarctic dry valley. Proc Natl Acad Sci USA 110:8990–8995CrossRefPubMedCentralPubMedGoogle Scholar
  8. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  9. Cowan DA et al (2011) Distribution and abiotic influences on hypolithic microbial communities in an Antarctic dry valley. Polar Biol 34:307–311CrossRefGoogle Scholar
  10. de La Torre J, Goebel B, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867CrossRefPubMedCentralPubMedGoogle Scholar
  11. de los Rios A, Wierzchos J, Sancho LG, Ascaso C (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol Ecol 50:143–152CrossRefGoogle Scholar
  12. de los Rios A et al (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190CrossRefPubMedGoogle Scholar
  13. de los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395CrossRefGoogle Scholar
  14. Doran PT et al (2002) Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J Geophys Res 107(D24):4772. doi: 10.1029/2001JD002045 CrossRefGoogle Scholar
  15. Elbert W et al (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462CrossRefGoogle Scholar
  16. Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373PubMedCentralPubMedGoogle Scholar
  17. Fraser CI et al (2014) Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci USA 111:5634–5639CrossRefPubMedCentralPubMedGoogle Scholar
  18. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:68–74CrossRefGoogle Scholar
  19. Friedmann EI, Kibler AP (1980) Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6:95–108CrossRefPubMedGoogle Scholar
  20. Friedmann EI, Kappen L, Meyer MA, Neinow JA (1993) Long-term productivity in the cryptoendolithic community of the Ross Desert, Antarctica. Microb Ecol 25:51–69CrossRefPubMedGoogle Scholar
  21. He Z et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77CrossRefPubMedGoogle Scholar
  22. Lee CK et al (2012) The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J 6:1046–1057CrossRefPubMedCentralPubMedGoogle Scholar
  23. Maghales C et al (2012) At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in continental Antarctica. PLoS One. doi: 10.1371/journal.pone.0044578 Google Scholar
  24. Ng KW, Pointing SB, Dvornyk V (2013) Patterns of nucleotide diversity in the idpA circadian gene in closely related species of cyanobacteria from extreme cold deserts. Appl Environ Microbiol 79:1516–1522CrossRefPubMedCentralPubMedGoogle Scholar
  25. Niederberger TD et al (2012) Diverse and highly active diazotrophic assemblages inhabit ephemerally wetted soils of the Antarctic Dry Valleys. FEMS Microbiol Ecol 82:376–390CrossRefPubMedGoogle Scholar
  26. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562CrossRefPubMedGoogle Scholar
  27. Pointing SB et al (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424CrossRefPubMedGoogle Scholar
  28. Pointing SB et al (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106:19964–19969CrossRefPubMedCentralPubMedGoogle Scholar
  29. Pointing SB, Bollard-Breen B, Gillman LN (2014) Diverse cryptic refuges for life during glaciation. Proc Natl Acad Sci USA 111:5452–5453CrossRefPubMedCentralPubMedGoogle Scholar
  30. Rao S et al (2011) Low-diversity fungal assemblage in an Antarctic Dry Valleys soil. Polar Biol 35:567–574CrossRefGoogle Scholar
  31. Scientific Committee on Antarctic Research (2004) SCAR Bulletin #155. Polar Rec 40:371–382CrossRefGoogle Scholar
  32. Thomas DSG (1997) Arid zones: their nature and extent. In: Thomas DSG (ed) Arid zone geomorphology, 2nd edn. Wiley, Chichester, pp 3–12Google Scholar
  33. Wierzchos J, de los Rios A, Ascaso C (2013) Microorganisms in desert rocks: the edge of life on Earth. Int Microbiol 15:171–181Google Scholar
  34. Wong KY et al (2010a) Hypolithic colonization of quartz pavement in the high altitude tundra of central Tibet. Microb Ecol 60:730–739CrossRefPubMedCentralPubMedGoogle Scholar
  35. Wong KY et al (2010b) Endolithic microbial colonization of limestone in a high-altitude arid environment. Microb Ecol 59:689–699CrossRefPubMedGoogle Scholar
  36. Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microb Ecol 11:71–146CrossRefGoogle Scholar
  37. Yung C et al (2014) Characterization of chasmoendolithic community in Miers Valley, McMurdo Dry Valleys, Antarctica. Microb Ecol 68:351–359PubMedGoogle Scholar
  38. Zhou J et al (2008) Spatial scaling of functional gene diversity across various microbial taxa. Proc Natl Acad Sci USA 105:7768–7773CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sean T. S. Wei
    • 1
  • Miguel-Angel Fernandez-Martinez
    • 2
  • Yuki Chan
    • 1
  • Joy D. Van Nostrand
    • 3
  • Asuncion de los Rios-Murillo
    • 2
  • Jill M. Y. Chiu
    • 4
  • Annapoorna Maitrayee Ganeshram
    • 1
  • S. Craig Cary
    • 5
  • Jizhong Zhou
    • 3
    • 6
    • 7
  • Stephen B. Pointing
    • 1
    • 5
  1. 1.Institute for Applied Ecology New Zealand, School of Applied SciencesAuckland University of TechnologyAucklandNew Zealand
  2. 2.Centro de Ciencias MedioambientalesMadridSpain
  3. 3.Department of Microbiology and Plant Biology, Institute for Environmental GenomicsUniversity of OklahomaNormanUSA
  4. 4.Department of BiologyHong Kong Baptist UniversityHong KongChina
  5. 5.International Centre for Terrestrial Antarctic ResearchUniversity of WaikatoHamiltonNew Zealand
  6. 6.Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina

Personalised recommendations