Polar Biology

, Volume 38, Issue 4, pp 579–582 | Cite as

Seabird guano boosts body size of water bears (Tardigrada) inhabiting the arctic tundra

  • Krzysztof Zawierucha
  • Joanna Cytan
  • Jerzy Smykla
  • Katarzyna Wojczulanis-Jakubas
  • Łukasz Kaczmarek
  • Jakub Z. Kosicki
  • Łukasz Michalczyk
Short Note

Abstract

(1) During the Arctic summer, little auks (Alle alle) deposit considerable amounts of guano on land. Ecosystems subsidised in nutrients are known to hold greater biodiversity and to produce grander biomass of plants and animals compared with areas where seabirds do not nest. (2) The aim of this study was to look into the relationship between guano fertilisation and body size of invertebrates inhabiting tundra. (3) The specimens of Macrobiotus islandicus islandicus Richters, 1904, a tardigrade dwelling in mosses and lichens of the Arctic, from six different populations from Spitsbergen (Hornsund fjord) were measured. Tardigrades were collected from areas different in terms of seabird guano effects on the tundra ecosystem. An overall body size index for tardigrades was calculated using a principal component analysis. (4) Here, we show that the body size of M. i. islandicus is larger in vicinities of the little auk colonies than in areas devoid of bird nesting sites. (5) Given that fitness of many invertebrates is positively correlated with their condition, our study underlines the ecological importance of a side effect of seabirds biology—the transfer of nutrients from the sea to the land.

Keywords

Alle alle Ecosystem subsidy Macrobiotus islandicus islandicus Svalbard 

References

  1. Altiero T, Rebecchi L (2001) Rearing tardigrades: results and problems. Zool Anz 240:217–221. doi:10.1078/0044-5231-00028 CrossRefGoogle Scholar
  2. Bartels PJ, Nelson DR, Exline RP (2011) Allometry and the removal of body size effects in the morphometric analysis of tardigrades. J Zool Syst Evol Res 49:17–25. doi:10.1111/j.1439-0469.2010.00593.x CrossRefGoogle Scholar
  3. Briggs AA, Young HS, McCauley DJ et al (2012) Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos. PLoS ONE 7:e41364. doi:10.1371/journal.pone.0041364 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Coulson SJ, Convey P, Aakra K, Aarvik L, Ávila-Jiménez ML, Babenko A, Biersma EM, Boström S, Brittain JE, Carlsson AM, Christoffersen K, De Smet WH, Ekremj T, Fjellberg A, Füreder L, Gustafssonm D, Gwiazdowicz DJ, Hansen LO, Holmstrup M, Hullé M, Kaczmarek Ł, Kolicka M, Kuklin V, Lakka HK, Lebedeva N, Makarova O, Maraldo K, Melekhina E, Ødegaard F, Pilskog HE, Simon JC, Sohlenius B, Solhøy T, Søli G, Stur E, Tanasevitch A, Taskaeva A, Velle G, Zawierucha K, Zmudczyńska-Skarbek K (2014) The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol Biochem 68:440–470Google Scholar
  5. Dastych H (1985) West Spitsbergen Tardigrada. Acta Zool Crac 28:169–214Google Scholar
  6. Dubiel E, Olech M (1992) Ornithocoprophilous plant communities of the southern slope of Ariekammen (Hornsund region, Spitsbergen) Landscape, Life World and Man in High Arctic. Institute of Ecology PAS, Warszawa. pp 167–175Google Scholar
  7. Higgins RP (1959) Life history of Macrobiotus islandicus Richters with notes on other tardigrades from Colorado. Trans Am Microsc Soc 78:137–154CrossRefGoogle Scholar
  8. Isaksen K, Gavrilo MV (2000) Little Auk Alle alle. In: Anker-Nilssen T, Bakken V, Strøm H, GolovkinAN, Bianki VV, Tatarinkova I P (eds) The status of marine birds breeding in the barents sea region. Norsk Polarinstitutt Rapportserie Nr. 113, Norwegian Polar Institute, TromsøGoogle Scholar
  9. Jakubas D, Zmudczyńska K, Wojczulanis-Jakubas K, Stempniewicz L (2008) Faeces deposition and numbers of vertebrate herbivores in the vicinity of planktivorous and piscivorous seabird colonies in Hornsund, Spitsbergen. Pol Polar Res 2:45–58Google Scholar
  10. Julious SA (2004) Using confidence intervals around individual means to assess statistical significance between two means. Pharm Stat 3:217–222. doi:10.1002/pst.126 CrossRefGoogle Scholar
  11. Kessler A (1971) Relation between egg production and food consumption in species of the genus Pardosa (Lycosidae, Araneae) under experimental conditions of food-abundance and food-shortage. Oecologia 8:93–109CrossRefGoogle Scholar
  12. McInnes SJ (1994) Zoogeographical distribution of terrestrial/freshwater tardigrades from current literature. J Nat Hist 28:257–352. doi:10.1080/00222939400770131 CrossRefGoogle Scholar
  13. Myrcha A, Tatur A (1991) Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Pol Polar Res 12:3–24Google Scholar
  14. Nelson DR (2002) Current status of the Tardigrada: evolution and ecology. Integr Comp Biol 42:652–659. doi:10.1093/icb/42.3.652 CrossRefPubMedGoogle Scholar
  15. Péry AR, Mons R, Flammarion P, Lagadic L, Garric J (2002) A modeling approach to link food availability, growth, emergence, and reproduction for the midge Chironomus riparius. EnvironToxicol Chem 21:2507–2513. doi:10.1002/etc.5620211133 Google Scholar
  16. Porazinska DL, Wall DH, Wirginia RA (2002) Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biol 25:569–574Google Scholar
  17. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Ramazzotti G, Maucci W (1983) II Phylum Tardigrada (III. edizione riveduta e aggiornata). Mem Ist Ital Idrobiol 41:1–1016Google Scholar
  19. Smykla J, Iakovenko N, Devetter M, Kaczmarek Ł (2012) Diversity and distribution of tardigrades in soils of Edmonson Point (Northern Victoria Land, continental Antarctica). Czech Polar Rep 2:61–70CrossRefGoogle Scholar
  20. Stempniewicz L (2005) Keystone species and ecosystem functioning. Seabirds in polar ecosystems. Ecol Quest 6:129–134Google Scholar
  21. Stempniewicz L, Błachowiak-Samołyk K, Węsławski JM (2007) Impact of climate change on zooplankton communities seabird populations and arctic terrestrial ecosystem—a scenario. Deep Sea Res Part 2 Top Stud Oceanogr 54:2934–2945. doi:10.1016/j.dsr2.2007.08.012 CrossRefGoogle Scholar
  22. Zawierucha K (2013) Tardigrada from Arctic tundra (Svalbard, Spitsbergen) with a description of Isohypsibius karenae (Eutardigrada: Isohypsibiidae). Pol Polar Res 34:383–396. doi:10.2478/popore-2013-0016 Google Scholar
  23. Zmudczyńska K, Olejniczak I, Zwolicki A, Iliszko L, Convey P, Stempniewicz L (2012) Influence of allochtonous nutrients delivered by colonial seabirds on soil collembolan communities on Spitsbergen. Polar Biol 35:1233–1245. doi:10.1007/s00300-012-1169-4 CrossRefGoogle Scholar
  24. Zwolicki A, Zmudczynska-Skarbek KM, Iliszko L, Stempniewicz L (2013) Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol 36:363–372. doi:10.1007/s00300-012-1265-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Krzysztof Zawierucha
    • 1
  • Joanna Cytan
    • 6
  • Jerzy Smykla
    • 2
    • 7
  • Katarzyna Wojczulanis-Jakubas
    • 3
  • Łukasz Kaczmarek
    • 1
  • Jakub Z. Kosicki
    • 4
  • Łukasz Michalczyk
    • 5
  1. 1.Department of Animal Taxonomy and Ecology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznanPoland
  2. 2.Department of Biodiversity, Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
  3. 3.Department of Vertebrate Ecology and ZoologyUniversity of GdańskGdańskPoland
  4. 4.Department of Avian Biology and Ecology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznanPoland
  5. 5.Department of Entomology, Institute of ZoologyJagiellonian UniversityKrakówPoland
  6. 6.Department of HydrobiologyUniversity of WarsawWarszawaPoland
  7. 7.Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonUSA

Personalised recommendations