Advertisement

Polar Biology

, Volume 37, Issue 11, pp 1669–1683 | Cite as

Bacterial communities and greenhouse gas emissions of shallow ponds in the High Arctic

  • Karita Negandhi
  • Isabelle LaurionEmail author
  • Connie Lovejoy
Original Paper

Abstract

Permafrost thawing in lowland Arctic tundra results in a polygonal patterned landscape and the formation of numerous small ponds. These ponds emit biologically mediated carbon dioxide (CO2) and methane (CH4). Their greenhouse gas (GHG) emissions are variable, for reasons that are not well understood. Emissions are related to a balance between GHG producers and consumers, as well as to physical properties of the water column controlling gas exchange rates with the atmosphere. Here, we investigated the bacterial diversity of polygonal and runnel ponds, two geomorphologically distinct pond types commonly found in continuous permafrost regions. Using a combination of 16S rRNA Sanger sequencing and high-throughput amplicon sequencing, we found that bacterial communities in overlying waters were clearly dominated by carbon degraders and were similar in both pond types, despite their variable physical and chemical properties. However, surface sediment communities in the two pond types were significantly different. Polygonal pond sediment was colonized by carbon degraders (46–29 %), cyanobacteria (20–27 %) that take up CO2 and produce oxygen, and methanotrophs (11–20 %) that consume CH4 and require oxygen. In contrast, cyanobacteria were effectively absent from the surface sediment of runnel ponds, which in addition to carbon degraders (65–81 %), were colonized by purple non-sulfur bacteria (5–21 %), and by fewer methanotrophs (1–5 %). The link between the methanotrophic community and the type of ponds could potentially be used to improve upscale estimates of GHG emissions based on landscape morphology in such remote regions.

Keywords

Methanotrophic communities Carbon Thermokarst ponds Permafrost Methane Carbon dioxide Pyrosequencing 

Notes

Acknowledgments

We thank P.-G. Rossi, V. Gélinas, C. Girard, L. Boutet, and G. Deslongchamps for their efficient help in the field and laboratory, A. Comeau for his precious help at the molecular laboratory and for pyrosequencing data processing, G. Gauthier, the Centre for Northern Studies, the Polar Continental Shelf Project and Parks Canada for logistic support, and ArcticNet, Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery and other grants to CL and IL, EnviroNorth CREATE training program, and International Polar Year for financial support.

References

  1. Abnizova A, Siemens J, Langer M, Boike J (2012) Small ponds with major impact: the relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions. Glob Biogeochem Cycles 26:GB2041Google Scholar
  2. Anisimova M, Gascuel O (2006) Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55:539–552PubMedCrossRefGoogle Scholar
  3. Anthony C (1982) The biochemistry of methylotrophs. Academic Press, Inc., LondonGoogle Scholar
  4. Barbier BA, Dziduch I, Liebner S, Ganzert L, Lantuit H, Pollard W, Wagner D (2012) Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol Ecol 82:1574–6941CrossRefGoogle Scholar
  5. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814PubMedCrossRefGoogle Scholar
  6. Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42CrossRefGoogle Scholar
  7. Bastviken D, Cole J, Pace ML, Tranvik LJ (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 8:4009–4021Google Scholar
  8. Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130CrossRefGoogle Scholar
  9. Bousquet P, Ciais P, Miller J, Dlugokencky EJ, Hauglustaine DA et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443PubMedCrossRefGoogle Scholar
  10. Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthaler J (2003) Members of a readily enriched β-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 69:6550–6559PubMedCrossRefPubMedCentralGoogle Scholar
  11. Castresana J (2000) Selection for conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  12. Christensen TR, Johansson T, Olsrud M et al (2007) A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Philos Trans R Soc A Math Phys Eng Sci 365:1643–1656CrossRefGoogle Scholar
  13. Cole J, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656CrossRefGoogle Scholar
  14. Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37:D141–D145PubMedCrossRefPubMedCentralGoogle Scholar
  15. Comeau AM, William KW, Tremblay JE, Carmack EC, Lovejoy C (2011) Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One 6:e27492PubMedCrossRefPubMedCentralGoogle Scholar
  16. Comeau AM, Harding T, Galand PE, Vincent WF, Lovejoy C (2012) Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters. Sci Rep 2:604PubMedCrossRefPubMedCentralGoogle Scholar
  17. Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797PubMedCrossRefPubMedCentralGoogle Scholar
  18. Ellis CJ, Rochefort L, Gauthier G, Pienitz R (2008) Paleoecological evidence for transitions between contrasting landforms in a polygon-patterned high Arctic wetland. Arc Antarct Alp Res 40:624–637CrossRefGoogle Scholar
  19. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364PubMedCrossRefGoogle Scholar
  20. Fortier D, Allard M (2004) Late Holocene syngenetic ice-wedge polygons development, Bylot Island, Canadian Arctic Archipelago. Can J Earth Sci 41:997–1012CrossRefGoogle Scholar
  21. French HM (2007) The periglacial environment, 3rd edn. John Wiley & Sons Ltd, England, p 458CrossRefGoogle Scholar
  22. Fung I, John J, Lemer J, Matthews E, Prather M, Steele LP, Fraser PJ (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res 96:13033–13065CrossRefGoogle Scholar
  23. Galand PE, Lovejoy C, Pouliot J, Garneau M, Vincent WF (2008) Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a Stamukhi lake and its source waters. Limnol Oceanogr 53:813–823CrossRefGoogle Scholar
  24. Gao X, Schlosser CA, Sokolov A, Anthony KW, Zhuang Q, Kicklighter D (2013) Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback. Environ Res Lett 8:035014CrossRefGoogle Scholar
  25. Garcia-Contreras R, Celis H, Romero I (2004) Importance of Rhodospirillum rubrum H+-pyrophosphatase under low-energy conditions. J Bacteriol 186:6651–6655PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gauthier G, Rocheford L, Reed A (1996) The exploitation of wetland ecosystems by herbivores on Bylot Island. Geosci Can 23:253–259Google Scholar
  27. Green JL, Bohannan BJM, Whitikar RJ (2008) Microbial biogeography: from taxonomy to traits. Science 23:1039–1043CrossRefGoogle Scholar
  28. Grosse G, Jones B, Arp C (2013) Thermokarst lakes, drainage, and drained basins. In: Shroder JF, Giardino R, Harbor J (eds) Treatise on geomorphology, vol 8., Glacial and periglacial geomorphologyAcademic Press, San Diego, pp 325–353CrossRefGoogle Scholar
  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  30. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  31. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  32. He R, Wooller MJ, Pohlmane JW, Quensenf J, Tiedjef JM, Leigh MB (2012) Shifts in identity and activity of methanotrophs in Arctic lake sediments in response to temperature changes. Appl Environ Microbiol 78:4715–4723PubMedCrossRefPubMedCentralGoogle Scholar
  33. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, sources, and photobleaching of chromophotic dissolved organic matter. Limnol Oceanogr 53:955–969CrossRefGoogle Scholar
  34. Hou S, Makarova KS, Saw JHW, Senin P et al (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct. doi: 10.1186/1745-6150-3-26 PubMedPubMedCentralGoogle Scholar
  35. Jaatinen K, Tuittila ES, Laine J, Yrjälä K, Fritze H (2005) Methane-oxidizing bacteria in a Finnish raised mire complex: effects of site fertility and drainage. Microb Ecol 50:429–439PubMedCrossRefGoogle Scholar
  36. Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A (2006) Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol Oceanogr 51:1195–1204CrossRefGoogle Scholar
  37. Kirchman DL (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
  38. Koch JC, Gurney K, Wipfli MS (2014) Morphology-dependent water budgets and nutrient fluxes in Arctic thaw ponds. Permafrost Periglac Process 25:79–93CrossRefGoogle Scholar
  39. Laurion I, Mladenov N (2013) Dissolved organic matter photolysis in Canadian Arctic thaw ponds. Environ Res Lett 8:035026CrossRefGoogle Scholar
  40. Laurion I, Vincent WF, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R (2010) Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55:115–133CrossRefGoogle Scholar
  41. Liu P, Qiu Q, Lu Y (2011) Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil. Appl Environ Microbiol 77:3884–3887PubMedCrossRefPubMedCentralGoogle Scholar
  42. Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol 63:50–56PubMedPubMedCentralGoogle Scholar
  43. McGuire AD, Melillo JM, Kicklighter DW, Joyce LA (1995) Equilibrium responses of soil carbon to climate change: empirical and process-based estimates. J Biogeogr 22:785–796CrossRefGoogle Scholar
  44. Mohit V, Archambault P, Toupoint N, Lovejoy C (2014) Phylogenetic differences in summer attached and free-living bacterial communities in a temperate coastal lagoon, revealed via high throughput 16S rRNA gene sequencing. Appl Environ Microbiol 29:16–23Google Scholar
  45. Morita M, Malvankar N, Franks AE, Summers ZM et al (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2:e00159–11. http://mbio.asm.org/content/2/4/e00159-11.short
  46. Negandhi K, Laurion I, Whiticar MJ, Galand PE, Xu X, Lovejoy C (2013) Small thaw ponds: an unaccounted source of methane in the Canadian high Arctic. PLoS ONE 8:e78204PubMedCrossRefPubMedCentralGoogle Scholar
  47. Newton RJ, McMahon KD (2011) Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Envirion Microbiol 13:887–899CrossRefGoogle Scholar
  48. Op den Camp HJM, Islam T, Stott MB, Harhangi HR et al (2009) Environmental, genomic and taxonomic perspectiveson methanotrophic Verrucomicrobia. Envirion Microbiol Rep 1:293–306CrossRefGoogle Scholar
  49. Padmanabhan P, Padmanabhan S, deRito C, Gray A et al (2003) Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69:1614–1622PubMedCrossRefPubMedCentralGoogle Scholar
  50. Pfennig N (1969) Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol 99:597–602PubMedPubMedCentralGoogle Scholar
  51. Roehm CL, Giesler R, Karlsson J (2009) Bioavailability of terrestrial organic carbon to lake bacteria: the case of a degrading subarctic permafrost mire complex. J Geophys Res Biogeosci 114:G03006Google Scholar
  52. Schilder J, Bastviken D, van Hardenbroek M, Kankaala P, Rinta P, Stötter T, Heiri O (2013) Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes. Geophys Res Lett 40:5752–5756CrossRefGoogle Scholar
  53. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedPubMedCentralGoogle Scholar
  54. Schloss PD, Westcott SL, Ryabin T, Hall JR et al (2009) Introducing Mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefPubMedCentralGoogle Scholar
  55. Simon H, Grossart H-P, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211CrossRefGoogle Scholar
  56. Stainton M, Capel M, Armstrong A (1977) The chemical analysis of freshwater, 2nd edn. Can Fish Mar Serv Misc Spec Publ. p 25Google Scholar
  57. Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Environ Res Lett 90:441–451Google Scholar
  58. Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9:1185–1192CrossRefGoogle Scholar
  59. van Huissteden J, Berrittella C, Parmentier FJW, Mi Y, Maximov TC, Dolman AJ (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Change 1:119–123CrossRefGoogle Scholar
  60. van Niel CB (1944) The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8:1–118PubMedPubMedCentralGoogle Scholar
  61. Vézina S, Vincent W (1997) Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada (73°N, 80°W). Polar Biol 17:523–534CrossRefGoogle Scholar
  62. Vonk JE, Mann PJ, Dowdy KL, Davydova A et al (2013) Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. Environ Res Lett 8:035023CrossRefGoogle Scholar
  63. Walter KM, Zimov A, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75PubMedCrossRefGoogle Scholar
  64. Walter KM, Smith LC, Chapin FS III (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans R Soc A Math Phys Eng Sci 365:165–1676CrossRefGoogle Scholar
  65. Walter Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM, Chapin FS, Finlay JC, Mack MC, Davydov S, Frenzel P, Frolking S (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511:452–456Google Scholar
  66. Werner JJ, Koren O, Hugenholtz P et al (2012) Impact of training sets on classification of high-throughput bacterial 16S rRNA gene surveys. ISME J 6:94–103PubMedCrossRefPubMedCentralGoogle Scholar
  67. Whiticar M (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  68. Wik M, Crill PM, Bastviken D, Danielsson A, Norbäck E (2011) Bubble trapped in arctic lake ice: potential implications for methane emissions. J Geophys Res 116:G03044Google Scholar
  69. Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725PubMedCrossRefPubMedCentralGoogle Scholar
  70. Zimov SA, Voropaev YV, Davydov SP, Zimova GM, Davydova AI, Chapin FS III, Chapin MC (2001) Flux of methane from north Siberian aquatic systems: influence on atmospheric methane. In: Paepe R, Melnikov VP, Overloop E, Gorokhov VD (eds) Permafrost response on economic development, environmental security and natural resources. NATO Science Series, Springer, pp 511–524CrossRefGoogle Scholar
  71. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman & Hall, New York, p 123Google Scholar
  72. Zona D, Oechel WC, Peterson KM, Clements RJ, Paw UKT, Ustin SL (2010) Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob Change Biol 16:1870–1882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Karita Negandhi
    • 1
  • Isabelle Laurion
    • 1
    Email author
  • Connie Lovejoy
    • 2
  1. 1.Centre Eau Terre Environnement and Centre for Northern Studies (CEN)Institut national de la recherche scientifiqueQuebecCanada
  2. 2.Département de biologie, Institut de Biologie Intégrative et des Systèmes, and TakuvikUniversité LavalQuebecCanada

Personalised recommendations