Polar Biology

, Volume 37, Issue 10, pp 1517–1531 | Cite as

A review of current Antarctic limno-terrestrial microfauna

  • Alejandro Velasco-CastrillónEmail author
  • John A. E. Gibson
  • Mark I. Stevens


Antarctic arthropods (mites and springtails) have been the subject of numerous studies. However, by far, the most diverse and numerically dominant fauna in Antarctica are the limno-terrestrial microfauna (tardigrades, rotifers and nematodes). Although they have been the focus of several studies, there remains uncertainty of the actual number of species in Antarctica. Inadequate sampling and conserved morphology are the main cause of misclassification of species and underestimation of this diversity. Most species’ distributional records are dominated by proximity to research stations or limited opportunistic collections, and therefore, an absence of records for a species may also be a consequence of the limitations of sampling. Limitations in fundamental knowledge of how many species are present and how widespread they are prevents any meaningful analyses that have been applied more generally to the arthropods within Antarctica, such as exploring ancient origins (at least pre-last glacial maximum) and tracking colonisation routes from glacial refugia. In this review, we list published species names and where possible the distribution of microfaunal (tardigrade, rotifer and nematode) species reported for Antarctica. Our current state of knowledge of Antarctic records (south of 60°S) includes 28 bdelloid rotifers, 66 monogonont rotifers, 59 tardigrades and 68 nematodes. In the light of the difficulties in working with microfauna across such geographical scales, we emphasise the need for molecular markers to help understand the ‘true levels’ of diversity and suggest future directions for Antarctic biodiversity assessment and species discovery.


Tardigrada Rotifera Nematoda DNA barcoding Antarctic Conservation Biogeographic Regions (ACBR) 



We thank Dieter Piepenburg for editorial comments and two anonymous reviewers. In particular, we thank Dr. Sven Boström for providing a thorough review of the nematodes and Dr. Sandra McInnes for assisting with the tardigrades. We are grateful to the University of Adelaide ( for a PhD scholarship to AVC and the South Australian Museum Mawson Trust for providing funding for the Sir Douglas Mawson Doctoral Scholarship ( This study was partially supported and funded by the Australian Antarctic Division ( Project (ASAC 2355 to MIS).

Supplementary material

300_2014_1544_MOESM1_ESM.xlsx (15 kb)
Supplementary material 1 (XLSX 15 kb)
300_2014_1544_MOESM2_ESM.xlsx (13 kb)
Supplementary material 2 (XLSX 12 kb)
300_2014_1544_MOESM3_ESM.xlsx (20 kb)
Supplementary material 3 (XLSX 19 kb)
300_2014_1544_MOESM4_ESM.xlsx (12 kb)
Supplementary material 4 (XLSX 11 kb)


  1. Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018Google Scholar
  2. Adams BJ, Wall DH, Gozel U, Dillman AR, Chaston JM, Hogg ID (2007) The southernmost worm, Scottnema lindsayae (Nematoda): diversity, dispersal and ecological stability. Polar Biol 30:809–815Google Scholar
  3. Andrássy I (1981) Revision of the order Monhysterida (Nematoda) inhabiting soil and inland waters. Opusc Zool Bp 17–18:13–47Google Scholar
  4. Andrássy I (1998) Nematodes in the Sixth Continent. J Nematode Morph Syst 1:107–186Google Scholar
  5. Andrássy I (2006) Halomonhystera, a new genus distinct from Geomonhystera Andrássy, 1981 (Nematoda: Monhysteridae). Meiofauna Mar 15:11–24Google Scholar
  6. Andrássy I (2008a) Eudorylaimus species (Nematoda: Dorylaimida) of continental Antarctica. J Nematode Morph Syst 11:49–66Google Scholar
  7. Andrássy I (2008b) On the male of the Antarctic nematode species, Plectus murrayi Yeates, 1970. J Nematode Morph Syst 11:87–89Google Scholar
  8. Andrássy I, Gibson J (2007) Nematodes from saline and freshwater lakes of the Vestfold Hills, East Antarctica, including the description of Hypodontolaimus antarcticus sp. n. Polar Biol 30:669–678Google Scholar
  9. Binda MG, Pilato G (2000) Diphascon (Adropion) tricuspidatum, a new species of eutardigrade from Antarctica. Polar Biol 23:75–76Google Scholar
  10. Blouin M (2000) Brief communication. Neutrality tests on mtDNA: unusual results from nematodes. J Hered 91:156–158PubMedGoogle Scholar
  11. Bohra P, Sanyal AK, Hussain A, Mitra B (2010) Five new records of nematodes from East Antarctica. J Threat Taxa 2:974–977Google Scholar
  12. Boström S (1995) Populations of Plectus acuminatus Bastian, 1865 and Panagrolaimus magnivulvatus n. sp. (Nematoda) from nunatakks in Dronning Maud Land, East Antarctica. Fundam Appl Nematol 18:25–34Google Scholar
  13. Boström S (1996) Chiloplectus masleni sp. nov. and variability in populations of Plectus acuminatus Bastian 1865 (Nematoda: Plectidae) from the nunatak Basen, Vestfjella, Dronning Maud Land, East Antarctica. Polar Biol 17:74–80Google Scholar
  14. Boström S (2005) Nematodes from Schirmacher Oasis, Dronning Maud Land, East Antarctica. Russ J Nematol 13:43–54Google Scholar
  15. Boström S, Holovachov O, Nadler S (2010) Description of Scottnema lindsayae Timm, 1971 (Rhabditida: Cephalobidae) from Taylor Valley, Antarctica and its phylogenetic relationship. Polar Biol 34:1–12Google Scholar
  16. British Antarctic Survey (2004) Antarctica, 1:10,000,000 scale map. British Antarctic Survey, CambridgeGoogle Scholar
  17. Burgess JS, Spate AP, Shevlin J (1994) The onset of deglaciation in the Larsemann Hills, Eastern Antarctica. Antarct Sci 6:491–495Google Scholar
  18. Burn AJ (1984) Life cycle strategies in two Antarctic Collembola. Oecologia 64:223–229Google Scholar
  19. Convey P, Block W (1996) Antarctic Diptera: ecology, physiology and distribution. Eur J Entomol 93:1–13Google Scholar
  20. Convey P, McInnes SJ (2005) Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica. Ecology 86:519–527Google Scholar
  21. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878PubMedGoogle Scholar
  22. Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117PubMedGoogle Scholar
  23. Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand CD, Barnes DKA, Clarke A, Pugh PJA, Linse K, Cary SC (2009) Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev 28:3035–3048Google Scholar
  24. Convey P, Chown SL, Clarke A, Barnes DK, Bokhorst S, Cummings V, Ducklow HW, Frati F, Green TA, Gordon S et al (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244Google Scholar
  25. Courtright EM, Wall DH, Virginia RA, Frisse LM, Vida JT, Thomas WK (2000) Nuclear and mitochondrial DNA sequence diversity in the Antarctic nematode Scottnema lindsayae. J Nematol 32:143–153PubMedPubMedCentralGoogle Scholar
  26. Cromer L, Gibson JAE, Swadling KM, Hodgson DA (2006) Evidence for a lacustrine faunal refuge in the Larsemann Hills, East Antarctica, during the last glacial maximum. J Biogeogr 33:1314–1323Google Scholar
  27. Czechowski P, Sands CJ, Adams BJ, D’Haese CA, Gibson JAE, McInnes SJ, Stevens MI (2012) Antarctic Tardigrada: a first step in understanding molecular operational taxonomic units (MOTUs) and biogeography of cryptic meiofauna. Invertebr Syst 26:526–538Google Scholar
  28. Dartnall HJG (1983) Rotifers of the Antarctic and subantarctic. Hydrobiologia 104:57–60Google Scholar
  29. Dartnall HJG (1995) Rotifers, and other aquatic invertebrates, from the Larsemann Hills, Antarctica. Pap Proc Roy Soc Tasmania 129:17–23Google Scholar
  30. Dartnall HJG (2000) A limnological reconnaissance of the Vestfold Hills. ANARE Rep 141:1–53Google Scholar
  31. Dartnall HJG (2005) Freshwater invertebrates of subantarctic South Georgia. J Nat Hist 39:3321–3342Google Scholar
  32. Dartnall HJG, Hollowday ED (1985) Antarctic Rotifers. Br Antarct Surv Sci Rep 100:1–46Google Scholar
  33. Dastych H (1984) The Tardigrada from Antarctic with descriptions of several new species. Acta Zool Cracov 27:377–436Google Scholar
  34. Dastych H (1989) An annotated list of Tardigrada from the Antarctic. Entomol Mitt Zool Mus Hambg 9:249–257Google Scholar
  35. Dastych H (1991) Redescription of Hypsibius antarcticus (Richters, 1904), with some notes on Hypsibius arcticus (Murray, 1907) (Tardigrada). Mitt Hamb Zool Mus Inst 88:141–159Google Scholar
  36. Dastych H (2003) Diphascon langhovdense (Sudzuki, 1964) stat. nov., a new taxonomic status for the semi-terrestrial tardigrade (Tardigrada). Acta Biol Benrodis 12:19–25Google Scholar
  37. Dastych H, Harris JM (1995) A new species of the genus Macrobiotus from inland nunataks in western Dronning Maud Land, continental Antarctica (Tardigrada). Entomol Mitt Zool Mus Hambg 11:175–182Google Scholar
  38. Dastych H, McInnes S (1994) Hexapodibius boothi sp. n., a new species of semi-terrestrial tardigrade from the Maritime Antarctic. Entomol Mitt Zool Mus Hambg 11:111–117Google Scholar
  39. Dastych H, Ryan PG, Watkins BP (1990) Notes on Tardigrada from western Dronning Maud Land (Antarctica) with a description of two new species. Entomol Mitt Zool Mus Hambg 10:57–66Google Scholar
  40. De Smet WH, Gibson JA (2008) Rhinoglena kutikovae n. sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. Polar Biol 31:595–603Google Scholar
  41. Derycke S, Vanaverbeke J, Rigaux A, Backeljau T, Moens T (2010) Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS ONE 5:e13716PubMedPubMedCentralGoogle Scholar
  42. Donner J (1972) Report on the finding of Rotifera (Rotatoria) from Antarctica. Polskie Arch Hydrobiol 19:251–252Google Scholar
  43. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850PubMedGoogle Scholar
  44. Fontaneto D, Barraclough TG, Chen K, Ricci C, Herniou EA (2008) Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Mol Ecol 17:3136–3146PubMedGoogle Scholar
  45. Fontaneto D, Kaya M, Herniou EA, Barraclough TG (2009) Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol Phylogen Evol 53:182–189Google Scholar
  46. Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci 111:5634–5639PubMedPubMedCentralGoogle Scholar
  47. Frati F, Spinsanti G, Dallai R (2001) Genetic variation of mtCOII gene sequences in the collembolan Isotoma klovstadi from Victoria Land, Antarctica: evidence for population differentiation. Polar Biol 24:934–940Google Scholar
  48. Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369Google Scholar
  49. Gagarin VG (2009) A revision of the genus Eutobrilus Tsalolikhin, 1981 (Nematoda, Triplonchida). Inl Wat Biol 2:205–212Google Scholar
  50. Ghosh SC, Chatterjee A, Mitra B, De J (2005) Antarctenchus motililus sp. n. (Nematoda: Tylenchida) from Schirmacher Oasis, East Antarctica. J Interacademica 9:367–371Google Scholar
  51. Gibson JAE, Cromer L, Agius JT, McInnes SJ, Marley NJ (2007) Tardigrade eggs and exuviae in Antarctic lake sediments: insights into Holocene dynamics and origins of the fauna. J Limnol 66(Suppl. 1):65–71Google Scholar
  52. Gore DB, Rhodes EJ, Augustinus PC, Leishman MR, Colhoun EA, Rees-Jones J (2001) Bunger Hills, East Antarctica: ice free at the last glacial maximum. Geology 29:1103–1106Google Scholar
  53. Greenslade P (1995) Collembola from the Scotia Arc and Antarctic Peninsula including descriptions of two new species and notes on biogeography. Pol Pismo Entomol 64:305–319Google Scholar
  54. Greenslade P, Wise KAJ (1984) Additions to the collembolan fauna of the Antarctic. Trans R Soc Aust 108:203–205Google Scholar
  55. Greenslade P, Farrow RA, Smith JMB (1999) Long distance migration of insects to a subantarctic island. J Biogeogr 26:1161–1167Google Scholar
  56. Hansson LA, Hylander S, Dartnall HJG, Lidström S, Svensson JE (2012) High zooplankton diversity in the extreme environments of the McMurdo Dry Valley lakes, Antarctica. Antarct Sci 24:131–138Google Scholar
  57. Hawes TC, Worland MR, Convey P, Bale JS (2007) Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography. Antarct Sci 19:3–10Google Scholar
  58. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132PubMedGoogle Scholar
  59. Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond 270(Suppl 1):S96–S99Google Scholar
  60. Heyns J (1994) Chiloplacoides antarcticus n. gen., n. sp. from western Dronning Maud Land, Antarctica (Nematoda: Cephalobidae). Fundam Appl Nematol 17:333–338Google Scholar
  61. Hodgson DA, Noon PE, Vyverman W, Bryant CL, Gore DB, Appleby P, Gilmour M, Verleyen E, Sabbe K, Jones VJ, Ellis-Evans JC, Wood PB (2001) Were the Larsemann Hills ice-free through the last glacial maximum? Antarct Sci 13:440–454Google Scholar
  62. Hogg ID, Stevens MI (2002) Soil fauna of Antarctic coastal landscapes. In: Beyer L, Bolter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Ecol Stud 154:265–282Google Scholar
  63. Holovachov O, Boström S (2006) Description of Acrobeloides arctowskii sp. n. (Rhabditida: Cephalobidae) from King George Island, Antarctica. Russ J Nematol 14:51–56Google Scholar
  64. Huiskes AHL, Convey P, Bergstrom DM (2006) Trends in Antarctic terrestrial and limnetic ecosystems. In: Bergstrom DM, Convey P,  Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 1–13 Google Scholar
  65. Ingole BS, Parulekar AH (1993) Limnology of freshwater lakes of Schirmacher Oasis, East Antarctica. Proc Indian Natl Sci Acad B 59:589–600Google Scholar
  66. Janiec K (1996) The comparison of freshwater invertebrates of Spitsbergen (Arctic) and King George Island (Antarctic). Pol Polar Res 17:173–202Google Scholar
  67. Ji Y et al (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett 16:1245–1257PubMedGoogle Scholar
  68. Kinchin IM (1994) The biology of tardigrades. Portland Press Ltd, London, p 186Google Scholar
  69. Kirjanova ES (1958) Antarctic specimens of freshwater nematodes of the genus Plectus Bastian (Nematoda, Plectidae). Sov Antarct Exped Inf Bull 3:101–103Google Scholar
  70. Kito K, Ohyama Y (2008) Rhabditid nematodes found from a rocky coast contaminated with treated waste water of Casey Station in East Antarctica, with a description of a new species of Dolichorhabditis Andrássy, 1983 (Nematoda: Rhabditidae). Zootaxa 1850:43–52Google Scholar
  71. Kito K, Shishida Y, Ohyama Y (1991) Plectus antarcticus de Man, 1904 and P. frigophilus Kirjanova, 1958 (Nematoda: Plectidae), with emphasis on the male, from the Soya Coast, East Antarctica. Nematologica 37:252–262Google Scholar
  72. Kito K, Shishida Y, Ohyama Y (1996) New species of the genus Eudorylaimus Andrassy, 1959 (Nematoda: Qudsianematidae) from East Antarctica. Polar Biol 16:163–169Google Scholar
  73. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeoclim Palaeoecol 198:11–37Google Scholar
  74. Lawver LA, Gahagan LM, Dalziel IWD (1998) A tight fit-Early Mesozoic Gondwana, a plate reconstruction perspective. Mem Natl Inst Polar Res Spec 53:214–229Google Scholar
  75. Marshall DJ, Pugh PJA (1996) Origin of the inland Acari of continental Antarctica, with particular reference to Dronning Maud Land. Zool J Linn Soc 118:101–118Google Scholar
  76. Maslen NR (1979) Additions to the nematode fauna of the Antarctic region with keys to taxa. Br Antarct Surv Bull 49:207–229Google Scholar
  77. Maslen NR (1981) The Signy Island terrestrial reference sites: XII. Population ecology of nematodes with additions to the fauna. Br Antarct Surv Bull 53:57–75Google Scholar
  78. Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38:3141–3151Google Scholar
  79. McInnes SJ (1995) Taxonomy and ecology of Tardigrades from Antarctic lakes. M Phil, Open University: 248Google Scholar
  80. McInnes SJ (2010) Echiniscus corrugicaudatus (Heterotardigrada; Echiniscidae) a new species from Ellsworth Land, Antarctica. Polar Biol 33:59–70Google Scholar
  81. McInnes SJ, Pugh PJA (1998) Biogeography of limno-terrestrial Tardigrada, with particular reference to the Antarctic fauna. J Biogeogr 25:31–36Google Scholar
  82. McInnes SJ, Pugh PJA (2007) An attempt to revisit the global biogeography of limno-terrestrial Tardigrada. J Limnol 66:90–96Google Scholar
  83. Meldal BHM, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJD (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogen Evol 42:622–636Google Scholar
  84. Miller WR, Heatwole H (1995) Tardigrades of the Australian Antarctic Territories: the Mawson Coast, East Antarctica. Invertebr Biol 114:27–38Google Scholar
  85. Miller JD, Horne P, Heatwole H, Miller WR, Bridges L (1988) A survey of the terrestrial Tardigrada of the Vestfold Hills, Antarctica. Hydrobiologia 165:197–208Google Scholar
  86. Miller WR, Heatwole H, Pidgeon RWJ, Gardiner GR (1994) Tardigrades of the Australian Antarctic Territories: the Larsemann Hills, East Antarctica. Trans Am Microsc Soc 113:142–160Google Scholar
  87. Miller WR, Miller JD, Heatwole H (1996) Tardigrades of the Australian Antarctic Territories: the Windmill Islands, East Antarctica. Zool J Linn Soc 116:175–184Google Scholar
  88. Moore PD (2002) Biogeography: springboards for springtails. Nature 418:381PubMedGoogle Scholar
  89. Morikawa K (1962) Notes on some Tardigrada from the Antarctic region. Biol Res Jpn Ant Res Exp 17:3–6Google Scholar
  90. Muñoz J, Felicisimo AM, Cabezas F, Burgaz AR, Martinez I (2004) Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304:1144–1147PubMedGoogle Scholar
  91. Murray J (1910) Part III. Antarctic Rotifera. British Antarctic Expedition 1907–9, under the command of Sir EH Shackleton, cvo reports on the scientific investigations 1:41–65Google Scholar
  92. Nedelchev S, Peneva V (2000) Description of three new species of the genus Mesodorylaimus Andrássy, 1959 (Nematoda: Dorylaimidae) from Livingston Island, Antarctica, with notes on M. imperator Loof, 1975. Russ J Nematol 8:161–172Google Scholar
  93. Nkem JN, Wall DH, Virginia RA, Barrett JE, Broos EJ, Porazinska DL, Adams BJ (2006) Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol 29:346–352Google Scholar
  94. Opalinski K (1972) Freshwater fauna and flora in Haswell island (Queen Mary Land, Eastern Antarctica). Pol Arch Hydrobiol 19:377–381Google Scholar
  95. Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct Sci 17:497–507Google Scholar
  96. Peneva V, Chipev N (1999) Laimaphelenchus helicosoma (Maslen, 1979) n. comb. (Nematoda: Aphelenchida) from the Livingston Island (the Antarctic). Bulg Antarct Res 2:57–61Google Scholar
  97. Pilato G, Binda MG (1999) Three new species of Diphascon of the pingue group (Eutardigrada, Hypsibiidae) from Antarctica. Polar Biol 21:335–342Google Scholar
  98. Pilato G, McInnes SJ, Lisi O (2012) Hebesuncus mollispinus (Eutardigrada, Hypsibiidae), a new species from maritime Antarctica. Zootaxa 3446:60–68Google Scholar
  99. Prosser SWJ, Velarde-Aguilar MG, León-Règagnon V, Hebert PDN (2013) Advancing nematode barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes. Mol Ecol Resour 13:1108–1115PubMedGoogle Scholar
  100. Pugh PJA (1993) A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic Islands and the Southern Ocean. J Nat Hist 27:323–421Google Scholar
  101. Pugh PJA, Convey P (2000) Scotia Arc Acari: antiquity and origin. Zool J Linn Soc 130:309–328Google Scholar
  102. Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeogr 35:2176–2186Google Scholar
  103. Robeson MS, Costello EK, Freeman KR, Whiting J, Adams B, Martin AP, Schmidt SK (2009) Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers. BMC Ecol 9:25PubMedPubMedCentralGoogle Scholar
  104. Rounsevell DE, Horne PA (1986) Terrestrial, parasitic and introduced invertebrates of the Vestfold Hills. In: Pickard J (ed) Antarctic Oasis. Terrestrial environments and history of the Vestfold Hills. Academic Press Australia, Sydney, pp 309–331Google Scholar
  105. Ryss A, Boström S, Sohlenius B (2005) Tylenchid nematodes found on the nunatak Basen, East Antarctica. Ann Zool 55:315–324Google Scholar
  106. Sands CJ, Convey P, Linse K, McInnes SJ (2008) Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecol 8:7PubMedPubMedCentralGoogle Scholar
  107. Segers H (2007) Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564:1–104Google Scholar
  108. Shishida Y, Ohyama Y (1986) A note on the terrestrial nematodes around Syowa station, Antarctica (extended abstract). Mem Natl Inst Polar Res, Spec Issue 44:259–260Google Scholar
  109. Sinclair BJ (2001) On the distribution of terrestrial invertebrates at Cape Bird, Ross Island, Antarctica. Polar Biol 24:394–400Google Scholar
  110. Sinclair BJ, Stevens MI (2006) Terrestrial microarthropods of Victoria Land and Queen Maud Mountains, Antarctica: implications of climate change. Soil Biol Biochem 38:3158–3170Google Scholar
  111. Smykla J, Porazinska DL, Iakovenko N, Janko K, Weiner WM, Niedbala W, Drewnik M (2010) Studies on Antarctic soil invertebrates: preliminary data on rotifers (Rotatoria), with notes on other taxa from Edmonson Point (Northern Victoria Land, Continental Antarctic). Acta Soc Zool Bohem 74:135–140Google Scholar
  112. Smykla J, Iakovenko N, Devetter M, Kaczmarek Ł (2012) Diversity and distribution of tardigrades in soils of Edmonson Point (Northern Victoria Land, continental Antarctica). Czech Polar Rep 2:61–70Google Scholar
  113. Sohlenius B (1989) Interactions between two species of Panagrolaimus in agar cultures. Nematologica 34:208–217Google Scholar
  114. Sohlenius B, Boström S (2005) The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biol 28:439–448Google Scholar
  115. Sohlenius B, Boström S (2008) Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biol 31:817–825Google Scholar
  116. Sohlenius B, Boström S, Hirschfelder A (1995) Nematodes, rotifers and tardigrades from nunataks in Dronning Maud Land, East Antarctica. Polar Biol 15:51–56Google Scholar
  117. Sohlenius B, Boström S, Hirschfelder A (1996) Distribution patterns of microfauna (nematodes, rotifers and tardigrades) on nunataks in Dronning Maud Land, East Antarctica. Polar Biol 16:191–200Google Scholar
  118. Sohlenius B, Boström S, Jönsson KI (2004) Occurrence of nematodes, tardigrades and rotifers on ice-free areas in East Antarctica. Pedobiologia 48:395–408Google Scholar
  119. Spaull V (1973a) Distribution of nematode feeding groups at Signy Island, South Orkney Islands, with an estimate of their biomass and oxygen consumption. Br Antarct Surv Bull 37:21–32Google Scholar
  120. Spaull V (1973b) Qualitative and quantitative distribution of soil nematodes of Signy Island, South Orkney Islands. Br Antarct Surv Bull 33:177–184Google Scholar
  121. Stevens MI, D’Haese CA (2014) Islands in ice: isolated populations of Cryptopygus sverdrupi (Collembola) among nunataks in the Sør Rondane Mountains, Dronning Maud Land, Antarctica. Biodiversity. doi: 10.1080/14888386.2014.928791
  122. Stevens MI, Hogg ID (2002) Expanded distributional records of Collembola and Acari in southern Victoria Land, Antarctica. Pedobiologia 46:485–495Google Scholar
  123. Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol Ecol 12:2357–2369PubMedGoogle Scholar
  124. Stevens MI, Hogg ID (2006a) Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biol Biochem 38:3171–3180Google Scholar
  125. Stevens MI, Hogg ID (2006b) The molecular ecology of Antarctic terrestrial and limnetic invertebrates and microbes. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 177–192Google Scholar
  126. Stevens MI, Fjellberg A, Greenslade P, Hogg ID, Sunnucks P (2006a) Redescription of the Antarctic springtail Desoria klovstadi using morphological and molecular evidence. Polar Biol 29:820–830Google Scholar
  127. Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006b) Southern Hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882PubMedGoogle Scholar
  128. Stevens MI, Porco D, D’Haese CA, Deharveng L (2011) Comment on “Taxonomy and the DNA barcoding enterprise” by Ebach (2011). Zootaxa 2838:85–88Google Scholar
  129. Sudzuki M (1964) On the microfauna of the Antarctic region. 1. Moss-water community at Langhovde. JARE Sci Rep 19:1–41Google Scholar
  130. Sudzuki M (1988) Comments on the antarctic Rotifera. Hydrobiologia 165:89–96Google Scholar
  131. Suren A (1990) Microfauna associated with algal mats in melt ponds of the Ross Ice Shelf. Polar Biol 10:329–335Google Scholar
  132. Terauds A, Chown SL, Morgan F, Peat HJ, Watts DJ, Keys H, Convey P, Bergstrom DM (2012) Conservation biogeography of the Antarctic. Divers Dist 18:726–741Google Scholar
  133. Timm RW (1971) Antarctic soil and freshwater nematodes from the McMurdo Sound region. Proc Helminthol Soc Wash 38:42–52Google Scholar
  134. Torricelli G, Carapelli A, Convey P, Nardi F, Boore JL, Frati F (2010) High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: evidence for cryptic species? Gene 449:30–40PubMedGoogle Scholar
  135. Tripati A, Backman J, Elderfield H, Ferretti P (2005) Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436:341–346PubMedGoogle Scholar
  136. Tsujimoto M, McInnes SJ, Convey P, Imura S (2014) Preliminary description of tardigrade species diversity and distribution pattern around coastal Syowa Station and inland Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Polar Biol. doi: 10.1007/s00300-014-1516-8
  137. Tumanov DV (2006) Five new species of the genus Milnesium (Tardigrada, Eutardigrada, Milnesiidae). Zootaxa 1122:1–23Google Scholar
  138. Utsugi K, Ohyama Y (1989) Antarctic tardigrada. Proc NIPR Symp Polar Biol 2:190–197Google Scholar
  139. Utsugi K, Ohyama Y (1991) Antarctic Tardigrada II. Molodezhnaya and Mt. Riiser-Larsen areas. Proc NIPR Symp Polar Biol 4:161–170Google Scholar
  140. Utsugi K, Ohyama Y (1993) Antarctic Tardigrada III. Fildes Peninsula of King George Island. Proc NIPR Symp Polar Biol 6:139–151Google Scholar
  141. Velasco-Castrillón A, Stevens MI (2014) Morphological and molecular diversity at a regional scale: a step closer to understanding Antarctic nematode biogeography. Soil Biol Biochem 70:272–284Google Scholar
  142. Velasco-Castrillón A, Schultz MB, Colombo F, Gibson JAE, Davies KA, Austin AD, Stevens MI (2014a) Distribution and diversity of microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS ONE 9:e87529PubMedPubMedCentralGoogle Scholar
  143. Velasco-Castrillón A, Page TJ, Gibson JAE, Stevens MI (2014b) Surprisingly high levels of biodiversity and endemism amongst Antarctic rotifers uncovered with mitochondrial DNA. Biodiversity 15:1–13Google Scholar
  144. Verlecar XN, Dhargalkar VK, Matondkar SGP (1996) Ecobiological studies of the freshwater lakes at Schirmacher Oasis, Antarctica. Sci Rep: Twelfth Indian Exp Antarct, Techn Publ 10: 233–257Google Scholar
  145. Vincent WF, James MR (1996) Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea sector, Antarctica. Biodivers Conserv 5:1451–1471Google Scholar
  146. Wall DH (2007) Global change tipping points: above-and below-ground biotic interactions in a low diversity ecosystem. Phil Trans R Soc B 362:2291–2306PubMedPubMedCentralGoogle Scholar
  147. Webster-Brown J, Gall M, Gibson J, Wood S, Hawes I (2010) The biogeochemistry of meltwater habitats in the Darwin Glacier region (80 S), Victoria Land, Antarctica. Antarct Sci 22:646–661Google Scholar
  148. Wharton DA (2003) The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol B 173:621–628PubMedGoogle Scholar
  149. Wise KAJ (1967) Collembola (springtails). Antarct Res Ser 10:123–148Google Scholar
  150. Yeates GW (1970) Two Terrestrial Nematodes from the McMurdo Sound Region, Antarctica, with a Note on Anaplectus arenicola Killick, 1964. J Helminthol 44:27–34Google Scholar
  151. Yeates GW (1979) Terrestrial nematodes from the Bunger Hills and Gaussberg, Antarctica. NZ J Zool 6:641–643Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alejandro Velasco-Castrillón
    • 1
    Email author
  • John A. E. Gibson
    • 2
  • Mark I. Stevens
    • 3
    • 4
  1. 1.Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental SciencesUniversity of AdelaideAdelaideAustralia
  2. 2.Institute of Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  3. 3.South Australian MuseumAdelaideAustralia
  4. 4.School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideAustralia

Personalised recommendations