Advertisement

Polar Biology

, Volume 37, Issue 11, pp 1579–1588 | Cite as

Vegetation abundance on the Barton Peninsula, Antarctica: estimation from high-resolution satellite images

  • Jung-Il Shin
  • Hyun-Cheol KimEmail author
  • Sang-Il Kim
  • Soon Gyu Hong
Original Paper

Abstract

Polar biodiversity should be monitored as an indicator of climate change. Biodiversity is mainly observed by field survey although this is very limited in broad inaccessible polar regions. Satellite imagery may provide valuable data with less bias, although spatial, spectral, and temporal resolutions are limited for analyzing biodiversity. The present study has two objectives. The first is constructing a first-ever vegetation map of the entire Barton Peninsula, Antarctica. The second is developing a monitoring method for long-term variation of vegetation, based on satellite images. Dominant mosses and lichens are distributed in small and sparse patches, which are limited to analysis using high-resolution satellite images. A sub-pixel classification method, spectral mixture analysis, is applied to overcome limited spatial resolution. As a result, vegetation shows high abundance along the southeastern shore and low-to-medium abundance in the nearly snow-free inland area. Even though spatial patterns of vegetation were almost invariant over 6 years, there was interannual variation in abundance aspects because of meteorological conditions. Therefore, extensive and long-term monitoring is needed for aspects of distribution and abundance. The present results can be used to design field surveys and monitor long-term variation as elementary data.

Keywords

Abundance Vegetation Antarctica Satellite Spectral mixture analysis 

Notes

Acknowledgments

This study was supported by Korea Polar Research Institute (PE14040 and PE14020) and Korea Aerospace Research Institute (PG14010). Thanks to the anonymous reviewers with helpful comments.

References

  1. Barcikowski A, Gurtowska J (1999) Studies on the biomass of selected species of Antarctic mosses on King George Island, South Shetland Islands, Antarctica. Pol Polar Res 20:283–290Google Scholar
  2. Bergstrom DM, Turner PAM, Scott J, Copson G, Shaw J (2006) Restricted plant species on sub-Antarctic Macquarie and Heard Islands. Polar Biol 29:532–539. doi: 10.1007/s00300-005-0085-2 CrossRefGoogle Scholar
  3. Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia G, Gens R, Pinzon JE, Tucker CJ, Tweedie CE, Webber PJ (2010) Circumpolar arctic tundra vegetation change is linked to sea ice decline. Earth Interact 14:1–20. doi: 10.1175/2010EI315.1 CrossRefGoogle Scholar
  4. Bokhorst S, Huiskes A, Convey P, Aerts R (2007) External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic region. Polar Biol 30:1315–1321. doi: 10.1007/s00300-007-0292-0 CrossRefGoogle Scholar
  5. Chen CM, Hepner GF, Forster RR (2003) Fusion of hyperspectral and radar data using the HIS transformation to enhance urban surface features. ISPRS J Photogramm Remote Sens 58:19–30. doi: 10.1016/S0924-2716(03)00014-5 CrossRefGoogle Scholar
  6. Chung H, Lee BY, Chang SK, Kim JH, Kim Y (2004) Ice cliff retreat and sea-ice formation observed around King Sejong Station in King George Island, West Antarctica. Ocean Polar Res 26:1–10Google Scholar
  7. Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641. doi: 10.1007/s00300-011-10068-0 CrossRefGoogle Scholar
  8. Fretwell PT, Convey P, Fleming AH, Peat HJ, Hughes KA (2011) Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biol 34:273–281. doi: 10.1007/s00300-010-0880-2 CrossRefGoogle Scholar
  9. Frohn RC, Hinkel KM, Eisner WR (2005) Satellite remote sensing classification of thaw lakes and drained thaw lake basins on the North Slope of Alaska. Remote Sens Environ 97:116–126. doi: 10.1016/j.rse.2005.04.022 CrossRefGoogle Scholar
  10. Furmanczyk K, Ochyra R (1982) Plant communities of the Admiralty Bay region (King George Island, South Shetland Islands, Antarctic). Pol Polar Res 3:25–39Google Scholar
  11. Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geoscience Remote Sens 26:65–74CrossRefGoogle Scholar
  12. Green ATG, Sancho LG, Pintado A, Schroeter B (2011) Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol 34:1643–1656. doi: 10.1007/s0030-011-1058-2 CrossRefGoogle Scholar
  13. Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Pearson Prentice Hall, New Jersey, pp 431–465Google Scholar
  14. Kennedy AD (1993) Photosynthetic response of the Antarctic moss Polytrichym alpestre Hoppe to low temperatures and freeze-thaw stress. Polar Biol 13:271–279CrossRefGoogle Scholar
  15. Kim JH, Ahn IY, Hong SG, Andreev M, Lim KM, Oh MJ, Koh YJ, Hur JS (2006) Lichen flora around the Korean Antarctic scientific station, King George Island, Antarctic. J Microbiol 44:480–491PubMedGoogle Scholar
  16. Kim JH, Ahn IY, Lee KS, Chung H, Choi HG (2007) Vegetation of Barton Peninsula in the neighbourhood of King Sejong station (King George Island, maritime Antarctic). Polar Biol 30:903–916. doi: 10.1007/s00300-006-0250-2 CrossRefGoogle Scholar
  17. Kim H, Kim T, Lee H (2012) Brightness value comparison between KOMPSAT-2 images with IKONOS/GEOEYE-1 images. Korean J Remote Sens 28:181–189CrossRefGoogle Scholar
  18. Laidler GJ, Treitz PM, Atkinson DM (2008) Remote sensing of arctic vegetation: relations between the NDVI, spatial resolution and vegetation cover on Boothia Peninsula, Nunavut. Arct 61:1–13Google Scholar
  19. Lee BY, Won Y, Oh SN (1997) Meteorological characteristics at King Sejong Station, Antarctica (1988–1996). Report BSPE 97604-00-1020-7. Korea Ocean and Developmental Institute, pp 571–599Google Scholar
  20. Lee JS, Lee HK, Hur J, Andreev M, Hong SG (2008) Diversity of the lichenized fungi in King George Island, Antarctica, revealed by phylogenetic analysis of partial large subunit rDNA sequences. J Microbiol Biotechnol 18:1016–1023PubMedGoogle Scholar
  21. Murray H, Lucieer A, Williams R (2010) Texture-based classification of sub-Antarctic vegetation communities on Heard Island. Int J Appl Earth Obs Geoinfo 12:138–149. doi: 10.1016/j.jag.2010.01.006 CrossRefGoogle Scholar
  22. Okin GS, Roberts DA, Murray B, Okin W (2001) Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sens Environ 77:212–225CrossRefGoogle Scholar
  23. Pannewitz S, Schlensog M, Green TGA, Sancho LG, Schroeter B (2003) Are lichens active under snow in continental Antarctica? Ecophysiol 135:30–38. doi: 10.1007/s00442-002-1162-7 Google Scholar
  24. Pereira AB, Spielmann AA, Martins MFN, Francelino MR (2007) Plant communities from ice-free areas of Keller Peninsula, King George Island, Antarctica. Oecol Bras 11:14–22CrossRefGoogle Scholar
  25. Poole I, Hunt RJ, Cantrill DJ (2001) A fossil wood flora from King George Island: ecological implications for an Antarctic Eocene vegetation. Ann Bot 88:33–54. doi: 10.1006/anbo.2001.1425 CrossRefGoogle Scholar
  26. Raynolds MK, Walker DA, Maier HA (2006) NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sens Environ 102:217–281. doi: 10.1016/j.rse.2006.02.016 CrossRefGoogle Scholar
  27. Raynolds MK, Comiso JC, Walker DA, Verbyla D (2008) Relationship between satellite-derived land surface temperatures, artic vegetation types, and NDVI. Remote Sens Environ 112:1884–1894. doi: 10.1016/j.rse.2007.09.008 CrossRefGoogle Scholar
  28. Robin M, Chapuis JL, Lebouvier M (2011) Remote sensing of vegetation cover change in islands of the Kerguelen archipelago. Polar Biol 34:1689–1700. doi: 10.1007/s00300-011-1069-z CrossRefGoogle Scholar
  29. Robinson SA, Wasley J, Tobin AK (2003) Living on the edge-plants and global change in continental and maritime Antarctica. Glob Chang Biol 9:1681–1717CrossRefGoogle Scholar
  30. Sancho LG, Pintado A (2004) Evidence of high annual growth rate for lichens in the maritime Antarctic. Polar Biol 27:312–319. doi: 10.1007/s00300-004-0594-4 CrossRefGoogle Scholar
  31. Selkirk PM, Skotnicki ML (2007) Measurement of moss growth in continental Antarctica. Polar Biol 30:407–413. doi: 10.1007/s00300-006-0197-3 CrossRefGoogle Scholar
  32. Stow DA, Hope A, McGuire D, David V, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeschner S, Petersen A, Zhou L, Myneni R (2004) Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens Environ 89:281–308. doi: 10.1016/j.rse.2003.10.018 CrossRefGoogle Scholar
  33. Théau J, Peddle DR, Duguay CR (2005) Mapping lichen in a habitat of Northern Quebec, Canada, using an enhancement-classification method and spectral mixture analysis. Remote Sens Environ 94:232–243. doi: 10.1016/j.rse.2004.10.008 CrossRefGoogle Scholar
  34. Torres-Mellado GA, Jaña R, Cassanova-Katny MA (2011) Antarctic hairgrass expansion in the South Shetland archipelago and Antarctic Peninsula revisited. Polar Biol 34:1679–1688. doi: 10.1007/s00300-011-1099-6 CrossRefGoogle Scholar
  35. Victoria FC, Pereira AB, Da Costa DP (2009) Composition and distribution of moss formations in the ice-free areas adjoining the Arctowski region, Admiralty Bay, King George Island, Antarctica. Iheringia Sér Bot 64:81–91Google Scholar
  36. Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1:9–23. doi: 10.1093/jpe/rtm005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jung-Il Shin
    • 1
  • Hyun-Cheol Kim
    • 1
    Email author
  • Sang-Il Kim
    • 1
  • Soon Gyu Hong
    • 1
  1. 1.Korea Polar Research InstituteKIOSTIncheonSouth Korea

Personalised recommendations