Advertisement

Polar Biology

, Volume 37, Issue 11, pp 1563–1578 | Cite as

Phytoplankton community composition and photosynthetic physiology in the Australian sector of the Southern Ocean during the austral summer of 2010/2011

  • Shintaro TakaoEmail author
  • Toru Hirawake
  • Gen Hashida
  • Hiroshi Sasaki
  • Hiroshi Hattori
  • Koji Suzuki
Original Paper

Abstract

Phytoplankton population dynamics play an important role in biogeochemical cycles in the Southern Ocean during austral summer. However, the relationship between phytoplankton community composition and primary productivity remains elusive in this region. We investigated the community composition and photosynthetic physiology of surface phytoplankton assemblages in the Australian sector of the Southern Ocean from December 2010 to January 2011. There were significant latitudinal variations in hydrographic and biological parameters along 110°E and 140°E. Surface (5 m) chlorophyll a (chl a) concentrations measured with high-performance liquid chromatography varied between 0.18 and 0.99 mg m−3. The diatom contribution to the surface chl a biomass increased in the south, as estimated with algal chemotaxonomic pigment markers, while the contributions of haptophytes and chlorophytes decreased. In our photosynthesis–irradiance (PE) curve experiment, the maximum photosynthetic rate normalized to chl a (\(P_{ \hbox{max} }^{*}\)), initial slope (α *), the maximum quantum yield of carbon fixation (Φ c max), and the photoinhibition index (β *) were higher in the region where diatoms contributed >50 % to the chl a biomass. In addition, there were statistically significant correlations between the diatom contribution to the chl a biomass and the PE parameters. These results suggested that the changes in the phytoplankton community composition, primarily in diatoms, could strongly affect photosynthetic physiology in the Australian sector of the Southern Ocean.

Keywords

Phytoplankton community composition Photosynthetic physiology Diatoms FIRe fluorometry Southern Ocean 

Notes

Acknowledgments

We are grateful to the captain and crew of the TR/V Umitaka-Maru, Dr. M. Moteki (Tokyo University of Marine Science and Technology), and many other colleagues on board for their assistance in collecting samples during cruises. We thank Dr. T. Odate (National Institute of Polar Research) for giving a chance to join the JARE RAMEEC (Responses of Antarctic Marine Ecosystems to global Environmental Changes with Carbonate systems) project. We also thank the Distributed Active Archive Center (DAAC) at the Goddard Space Flight Center (GSFC) for the production and distribution of satellite data. We appreciate the editor, Dr. A.-C. Alderkamp, and two anonymous reviewers for providing valuable comments that improved the manuscript significantly. This work was supported in part by the Japan Society for the Promotion of Science (JSPS), the JARE RAMEEC project, and the JAXA GCOM-C RA4 (JX-PSPC-381949).

References

  1. Alderkamp A-C, de Baar HJW, Visser RJW, Arrigo KR (2010) Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean? Limnol Oceanogr 55:248–1264Google Scholar
  2. Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, van Woert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367PubMedCrossRefGoogle Scholar
  3. Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search of physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40:4–25CrossRefGoogle Scholar
  4. Bowie AR, Sedwick PN, Worsfold PJ (2004) Analytical intercomparison between flow injection–chemiluminescence and flow injection–spectrophotometry for the determination of picomolar concentrations of iron in seawater. Limnol Oceanogr Methods 2:42–54CrossRefGoogle Scholar
  5. Boyd PW, Abraham ER (2001) Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep Sea Res II 48:2529–2550CrossRefGoogle Scholar
  6. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702PubMedCrossRefGoogle Scholar
  7. Bracher AU, Kroon BMA, Lucas MI (1999) Primary production, physiological state and composition of phytoplankton in the Atlantic Sector of the Southern Ocean. Mar Ecol Prog Ser 190:1–16CrossRefGoogle Scholar
  8. Claustre H, Moline MA, Prézelin BB (1997) Sources of variability in the column photosynthetic cross section for Antarctic coastal waters. J Geophys Res 102. doi: 10.1029/96JC02439
  9. Cleveland JS, Weidemann AD (1993) Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnol Oceanogr 38:1321–1327CrossRefGoogle Scholar
  10. Coale KH, Johnson KS, Chavez FP, Buesseler KO, Barber RT, Brzezinski MA, Cochlan WP, Millero FJ, Falkowski PG, Bauer JE, Wanninkhof RH, Kudela RM, Altabet MA, Hales BE, Takahashi T, Landry MR, Bidigare RR, Wang X, Chase Z, Strutton PG, Friederich GE, Gorbunov MY, Lance VP, Hilting AK, Hiscock MR, Demarest M, Hiscock WT, Sullivan KF, Tanner SJ, Gordon RM, Hunter CN, Elrod VA, Fitzwater SE, Jones JL, Tozzi S, Koblizek M, Roberts AE, Herndon J, Brewster J, Ladizinsky N, Smith G, Cooper D, Timothy D, Brown SL, Selph KE, Sheridan CC, Twining BS, Johnson ZI (2004) Southern Ocean iron enrichment experiment: carbon cycling in high- and low-Si waters. Science 304:408–414PubMedCrossRefGoogle Scholar
  11. Cota CF, Smith WO, Mitchell BG (1994) Photosynthesis of Phaeocystis in the Greenland Sea. Limnol Oceanogr 39:948–953CrossRefGoogle Scholar
  12. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8CrossRefGoogle Scholar
  13. de Baar HJW, de Jong JTM, Bakker DCE, Löscher BM, Veth C, Bathmann U, Smetacek V (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373:412–415CrossRefGoogle Scholar
  14. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109. doi: 10.1029/2004JC002378
  15. de Salas MF, Eriksen R, Davidson AT, Wright SW (2011) Protistan communities in the Australian sector of the sub-Antarctic Zone during SAZ-SENSE. Deep Sea Res II 58:2135–2149CrossRefGoogle Scholar
  16. DOE (1994) In: Dickson AG, Goyet C (eds) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2. Carbon Dioxide Information Analysis Center, Report ORNL/CDIAC-74, OakRidge National Laboratory, OakRidge, TennesseeGoogle Scholar
  17. Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from Argo float profiles. J Geophys Res 113. doi: 10.1029/2006JC004051
  18. Falkowski PG, Greene RM, Geider RJ (1992) Physiological limitation on phytoplankton productivity in the ocean. Oceanography 5:84–91CrossRefGoogle Scholar
  19. Falkowski PG, Green R, Kolber Z (1994) Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to the field. Bios Scientific, Milton ParkGoogle Scholar
  20. Fouilland E, Descolas-Gros C, Courties C, Pons V (1999) Autotrophic carbon assimilation and biomass from size-fractionated phytoplankton in the surface waters across the subtropical frontal zone (Indian Ocean). Polar Biol 21:90–96CrossRefGoogle Scholar
  21. Gervais F, Riebesell U, Gorbunov MY (2002) Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol Oceanogr 47:1324–1335CrossRefGoogle Scholar
  22. Goffart A, Catalano G, Hecq JH (2000) Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. J Mar Syst 27:161–175CrossRefGoogle Scholar
  23. Gorbunov MY, Kolber ZS, Falkowski PG (1999) Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry. Photosynth Res 62:141–153CrossRefGoogle Scholar
  24. Greene RM, Geider RJ, Kolber Z, Falkowski PG (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100:565–575PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36CrossRefGoogle Scholar
  26. Hirawake T, Satoh H, Ishimaru T, Yamaguchi Y (2000) Photosynthetic characteristics of phytoplankton off Adéieland, Antarctica, during the austral summer. Polar Biosci 13:28–42Google Scholar
  27. Hiscok MR, Lance VP, Apprill AM, Bidigare RR, Johnson ZI, Mitchell BG, Smith WO, Barber R (2008) Photosynthetic maximum quantum yield increases are an essential component of the Southern Ocean phytoplankton response to iron. Proc Natl Acad Sci USA 105:4775–4780CrossRefGoogle Scholar
  28. Isada T, Kuwata A, Saito H, Ono T, Ishii M, Yoshikawa-Inoue H, Suzuki K (2009) Photosynthetic features and primary productivity of phytoplankton in the Oyashio and Kuroshio-Oyashio transition regions of the northwest Pacific. J Plankton Res 31:1009–1025CrossRefGoogle Scholar
  29. Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642Google Scholar
  30. Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kolber ZS, Barber RT, Coale KH, Fitzwater SE, Greene RM, Johnson KS, Lindiey S, Falkowski PG (1994) Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371:145–149CrossRefGoogle Scholar
  32. Korb RE, Whitehouse MJ, Thorpe SE, Gordon M (2005) Primary production across the Scotia Sea in relation to the physico-chemical environment. J Mar Syst 57:231–249CrossRefGoogle Scholar
  33. Lance VP, Hiscock MR, Hilting AK, Stuebe DA, Bidigare RR, Smith WO, Barber RT (2007) Primary productivity, differential size fraction and pigment composition responses in two Southern Ocean in situ iron enrichments. Deep Sea Res 54:747–773CrossRefGoogle Scholar
  34. Lannuzel D, Schoemann V, de Jong J, Tison JL, Chou L (2007) Distribution and biogeochemical behaviour of iron in the East Antarctic sea ice. Mar Chem 106:18–32CrossRefGoogle Scholar
  35. Latasa M (2007) Improving estimations of phytoplankton class abundances using CHEMTAX. Mar Ecol Prog Ser 329:13–21CrossRefGoogle Scholar
  36. MacIntyre HL, Geider RJ (1996) Regulation of Rubisco activity and its potential effect on photosynthesis during mixing in a turbid estuary. Mar Ecol Prog Ser 144:247–264CrossRefGoogle Scholar
  37. Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX-a program for estimating class abundances from chemical makers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283CrossRefGoogle Scholar
  38. Marchant HJ, Davidson AT, Wright SW (1987) The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean. Proc NIPR Symp Polar Biol 1:1–9Google Scholar
  39. Martin JH, Gordon RM, Fitzwaters SE (1990) Iron in Antarctic waters. Nature 345:156–158CrossRefGoogle Scholar
  40. McNeil BI, Metzl N, Key RM, Matear RJ, Corbiere A (2007) An empirical estimate of the Southern Ocean air–sea CO2 flux. Glob Biogeochem Cycles 21:GB3011. doi: 10.1029/2007GB002991
  41. Mitchell BG, Holm-Hansen O (1991) Observations and modeling of the Antarctic phytoplankton crop in relation to mixing depth. Deep Sea Res 38:981–1007CrossRefGoogle Scholar
  42. Mitchell BG, Brody EA, Holm-Hansen O, McClain C, Bishop J (1991) Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol Oceanogr 36:1662–1677CrossRefGoogle Scholar
  43. Moline MA, Schofield O, Boucher NP (1998) Photosynthetic parameters and empirical modeling of primary production: a case study on the Antarctic Peninsula shelf. Antarct Sci 10:45–54Google Scholar
  44. Moore CM, Seeyave S, Hickman AE, Allen JT, Lucas MI, Planquette H, Pollard RT, Poulton AJ (2007) Iron-light interactions during the CROZet natural iron bloom and export experiment (CROZEX) I: phytoplankton growth and photophysiology. Deep Sea Res II 54:2045–2065CrossRefGoogle Scholar
  45. Nelson DM, Smith WO (1991) Sverdrup revisited: critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance-mixing regime. Limnol Oceanogr 36:1650–1661CrossRefGoogle Scholar
  46. Nelson DM, Tréguer P (1992) Role of silicon as a limiting nutrient to Antarctic diatoms: evidence from kinetic studies in the Ross Sea ice-edge zone. Mar Ecol Prog Ser 80:255–264CrossRefGoogle Scholar
  47. Odate T, Fukuchi M (1995) Distribution and community structure of picophytoplankton in the Southern Ocean during the late austral summer of 1992. Proc NIPR Symp Polar Biol 8:86–100Google Scholar
  48. Orsi AH, Whitworth T III, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res 42:641–673CrossRefGoogle Scholar
  49. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  50. Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670CrossRefGoogle Scholar
  51. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60PubMedCrossRefGoogle Scholar
  52. Sarthou G, Timmermans KR, Blain S, Tréguer P (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42CrossRefGoogle Scholar
  53. Schoemanna V, Becquevorta S, Stefelsb J, Rousseaua V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66CrossRefGoogle Scholar
  54. Scott FJ, Marchant HJ (2005) Antarctic marine protists. Australian Biological Resources Study and Australian Antarctic Division, p 572Google Scholar
  55. Sedwick PN, Bowie AR, Trull T (2008) Dissolved iron in the Australian sector of the Southern Ocean (CLIVAR SR3 section): meridional and seasonal trends. Deep Sea Res 55:911–925CrossRefGoogle Scholar
  56. Seeyave S, Lucas MI, Moore CM, Poulton AJ (2007) Phytoplankton productivity and community structure in the vicinity of the Crozet Plateau during austral summer 2004/2005. Deep Sea Res II 54:2020–2044CrossRefGoogle Scholar
  57. Smith WO, Asper VL (2001) The influence of phytoplankton assemblage composition on biogeochemical characteristics and cycles in the southern Ross Sea, Antarctica. Deep Sea Res 48:137–161CrossRefGoogle Scholar
  58. Sohrin Y, Iwamoto S, Matsui M, Obata H, Nakayama E, Suzuki K, Handa N, Ishii M (2000) The distribution of Fe in the Australian sector of the Southern Ocean. Deep Sea Res 47:55–84CrossRefGoogle Scholar
  59. Strutton PG, Griffiths FB, Waters RL, Wright SW, Bindoff NL (2000) Primary productivity off the coast of the East Antarctica (80–150°E): January to March 1996. Deep Sea Res II 47:2327–2362CrossRefGoogle Scholar
  60. Suggett DJ, Moore CM, Hickman AE, Geider RJ (2009) Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser 376:1–19CrossRefGoogle Scholar
  61. Sukenik A, Bennett J, Falkowski P (1987) Light-saturated photosynthesis—limitation by electron transport or carbon fixation? BBA-Bioenerg 891:205–215CrossRefGoogle Scholar
  62. Suzuki K, Kishino M, Sasaoka K, Saitoh S-I, Saino T (1998) Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific. J Oceanogr 54:517–526CrossRefGoogle Scholar
  63. Suzuki K, Liu H, Saino T, Obata H, Takano M, Okamura K, Sohrin Y, Fujishima Y (2002) East–west gradients in the photosynthetic potential of phytoplankton and iron concentration in the subarctic Pacific Ocean during early summer. Limnol Oceanogr 47:1581–1594CrossRefGoogle Scholar
  64. Suzuki K, Hinuma A, Saito H, Kiyosawa H, Liu H, Saino T, Tsuda A (2005) Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Prog Oceanogr 64:167–187CrossRefGoogle Scholar
  65. Suzuki K, Saito H, Isada T, Hattori-Saito A, Kiyosawa H, Nishioka J, Michael R, Mckay L, Kuwata A, Tsuda A (2009) Community structure and photosynthetic physiology of phytoplankton in the northwest subarctic Pacific during an in situ iron fertilization experiment (SEEDS-II). Deep Sea Res II 56:2733–2744CrossRefGoogle Scholar
  66. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49:1601–1622CrossRefGoogle Scholar
  67. Takao S, Hirawake T, Wright SW, Suzuki K (2012) Variations of net primary productivity and phytoplankton community composition in the Indian sector of the Southern Ocean as estimated from ocean color remote sensing data. Biogeosciences 9:3875–3890CrossRefGoogle Scholar
  68. Tilzer MM, Elbrächter M, Gieskes WW, Beese B (1986) Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol 5:105–111CrossRefGoogle Scholar
  69. Tomas CR (1997) Identifying marine phytoplankton. Academic Press, New YorkGoogle Scholar
  70. Uitz J, Claustre H, Griffiths FB, Ras J, Garcia N, Sandroni V (2009) A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean). Deep Sea Res 56:541–560CrossRefGoogle Scholar
  71. Vaillancourt RD, Sambrotto RN, Green S, Matsuda A (2003) Phytoplankton biomass and photosynthetic competency in the summertime Mertz Glacier Region of East Antarctica. Deep Sea Res II 50:1415–1440CrossRefGoogle Scholar
  72. Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49PubMedCrossRefGoogle Scholar
  73. Van Hilst CM, Smith WO (2002) Photosynthesis/irradiance relationships in the Ross Sea, Antarctica, and their control by phytoplankton assemblage composition and environmental factors. Mar Ecol Prog Ser 226:1–12CrossRefGoogle Scholar
  74. Venables H, Moore CM (2010) Phytoplankton and light limitation in the Southern Ocean: learning from high-nutrient, high-chlorophyll areas. J Geophys Res 115. doi: 10.1029/2009JC005361
  75. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992CrossRefGoogle Scholar
  76. Westwood KJ, Griffiths FB, Meiners KM, Williams GD (2010) Primary productivity off the Antarctic coast from 30°–80°E; BROKE-West survey, 2006. Deep Sea Res II 57:794–814CrossRefGoogle Scholar
  77. Wright SW, van den Enden RL (2000) Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January–March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res II 47:2363–2400CrossRefGoogle Scholar
  78. Wright SW, Thomas DP, Marchant HJ, Higgins HW, Mackey MD, Mackey DJ (1996) Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorisation program. Mar Ecol Prog Ser 144:285–298CrossRefGoogle Scholar
  79. Wright SW, van den Enden RL, Pearce I, Davidson AT, Scott FJ, Westwood KJ (2010) Phytoplankton community structure and stocks in the Southern Ocean (30°–80°E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res II 57:758–778CrossRefGoogle Scholar
  80. Yoshie N, Suzuki K, Kuwata A, Nishioka J, Saito H (2010) Temporal and spatial variations in photosynthetic physiology of diatoms during the spring bloom in the western subarctic Pacific. Mar Ecol Prog Ser 399:39–52CrossRefGoogle Scholar
  81. Yoshikawa T, Meguro M, Takeda S, Furuya K (2007) Spatial heterogeneity in photosynthesis–irradiance parameters of phytoplankton across a cyclonic eddy in the Antarctic Divergence zone along 140°E. Geophys Res Lett 34. doi: 10.1029/2007GL030736
  82. Zapata M, Jeffrey SW, Wright SW, Rodríguez F, Garrido JL, Clementson L (2004) Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83–102CrossRefGoogle Scholar
  83. Zubkov MV, Sleigh MA, Tarran GA, Burkill PH, Leakey RJG (1998) Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Sea Res 45:1339–1355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shintaro Takao
    • 1
    • 2
    Email author
  • Toru Hirawake
    • 3
  • Gen Hashida
    • 4
  • Hiroshi Sasaki
    • 5
  • Hiroshi Hattori
    • 6
  • Koji Suzuki
    • 1
    • 2
    • 7
  1. 1.Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
  2. 2.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  3. 3.Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
  4. 4.National Institute of Polar ResearchTachikawaJapan
  5. 5.Department of Biological SciencesSenshu University of IshinomakiIshinomakiJapan
  6. 6.Department of Marine Sciences and TechnologyHokkaido Tokai UniversitySapporoJapan
  7. 7.CRESTJapan Science and Technology AgencySapporoJapan

Personalised recommendations