Polar Biology

, Volume 37, Issue 11, pp 1549–1561 | Cite as

Intertidal community composition along rocky shores in South-west Greenland: a quantitative approach

  • Signe HøgslundEmail author
  • Mikael K. Sejr
  • Jozef WiktorJr.
  • Martin E. Blicher
  • Susse Wegeberg
Original Paper


The intertidal communities on rocky shores are directly subjected to climatic changes in air and water temperatures and to derived effects of climate change, such as changes in freshwater run-off and ice dynamics. Global warming occurs at elevated rates in Greenland and results in changing species distributions with range expansions to the north and new species entering terrestrial habitats from the south. There is, however, no quantitative knowledge of past or present species distribution in the littoral zone of Southern Greenland, an area which represents an important gateway for northern range expansions of temperate species. This study provides baseline information on abundances of macroorganisms in the eulittoral Southern Greenland. This knowledge will pave the way for future studies on the impact of climate change and anthropogenic activities on these communities. Nine sites, situated at different exposure levels, were investigated. A total of 22 taxa were recorded, suggesting low species richness. Patellid limpets and predators such as dogwhelks, starfish and crabs were absent. Total standing stock ranged from 0 to 31,898 g m−2. Species composition and biomasses were related to locally generated wave exposure, oceanic swells and ice scouring. The high standing stock at sheltered sites indicated that neither light, temperature nor nutrients, constrained buildup of biomass in this environment. Inshore seasonal measurements of water and air temperatures were recorded for the first time in the region, displaying low water temperatures and high variation in air temperatures, indicating lack of insulating stable sea ice in the area. Possible impacts of ongoing temperature changes are discussed based on recorded temperatures and meteorological data from the past 30 years.


Air temperature Arctic Biomass Climate change Greenland Intertidal Rocky shore Sea surface temperature 



We would like to thank Jens Deding, Poul Møller Pedersen and Tom Djurhuus for skillful assistance with fieldwork and logistics. We thank Palle Bo Nielsen from the Danish Meterological Institute (DMI) for providing tide model data. The study was funded by the Danish Environmental Protection Agency (grant no. 112-00115), the Bureau of Minerals and Petroleum, Greenland Government, the Greenland Climate Research Center, the Danish Ministry of the Environment (DANCEA), the Ministry of Education, Research and Nordic Cooperation (IIN), Aage V. Jensens Charity Foundation, and is a part of the Arctic Science Partnership (


  1. Ballantine WJ (1961) A biologically defined exposure scale for the comparative description of rocky shores. Field Stud J 1:1–19Google Scholar
  2. Barry JP, Baxter CH, Sagarin RD, Gilman SE (1995) Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267:672–675PubMedCrossRefGoogle Scholar
  3. Bell EC, Denny MW (1994) Quantifying wave exposure—a simple device for recording maximum velocity and results of its use at several field sites. J Exp Mar Biol Ecol 181:9–29CrossRefGoogle Scholar
  4. Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Prog Ser 303:167–175CrossRefGoogle Scholar
  5. Bertness MD, Gaines SD, Hay ME (2001) Marine community ecology. Sinauer Associates Inc, MassachusettsGoogle Scholar
  6. Beuchel F, Gulliksen B, Carroll ML (2006) Long-term patterns of rocky bottom macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to climate variability (1980–2003). J Marine Syst 63:35–48CrossRefGoogle Scholar
  7. Blanchette CA, Miner CM, Raimondi PT, Lohse D, Heady KEK, Broitman BR (2008) Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J Biogeogr 35:1593–1607CrossRefGoogle Scholar
  8. Blicher ME, Sejr MK, Høgslund S (2013) Population structure of Mytilus edulis in the intertidal zone in a subarctic fjord, SW Greenland. Mar Ecol Prog Ser 487:89–100CrossRefGoogle Scholar
  9. Broitman BR, Mieszkowska N, Helmuth B, Blanchette CA (2008) Climate and recruitment of rocky shore intertidal invertebrates in the eastern north Atlantic. Ecology 89:81–90CrossRefGoogle Scholar
  10. Buch E (2002) Present oceanographic conditions in Greenland waters. Danish Meteorological Institute, CopenhagenGoogle Scholar
  11. Christensen T (1981) Havbundens planter. In: Böcher TW, Nielsen CO, Schou A (eds) Danmarks Natur, Book 10. Politikens Forlag, Copenhagen, pp 184–192Google Scholar
  12. Connell JH (1972) Community interactions on marine rocky intertidal shores. Annu Rev Ecol Sys 3:169–192CrossRefGoogle Scholar
  13. Coyer JA, Hoarau G, Skage M, Stam WT, Olsen JL (2006) Origin of Fucus serratus (Heterokontophyta; Fucaceae) populations in Iceland and the Faroes: a microsatellite-based assessment. Euro J Phycol 41:235–246CrossRefGoogle Scholar
  14. Davenport J, Davenport JL (2005) Effects of shore height, wave exposure and geographical distance on thermal niche width of intertidal fauna. Mar Ecol Prog Ser 292:41–50CrossRefGoogle Scholar
  15. Espinosa F, Guerra-Garcia JM (2005) Algae, macrofaunal assemblages and temperature: a quantitative approach to intertidal ecosystems of Iceland. Helgoland Mar Res 59:273–285CrossRefGoogle Scholar
  16. Florczyk I, Latala A (1989) The phytobenthos of the Hornsund fjord, SW Spitsbergen. Polar Res 7:29–41CrossRefGoogle Scholar
  17. Fonseca MS, Malhotra A (2010) WEMo: wave exposure model for use in ecological forecasting 4.0. Center for coastal fisheries and habitat research, North CarolinaGoogle Scholar
  18. Fonseca M, Whitfield PE, Kelly NM, Bell SS (2002) Modeling seagrass landscape pattern and associated ecological attributes. Ecol Appl 12:218–237CrossRefGoogle Scholar
  19. Fredriksen S, Kile MR (2012) The algal vegetation in the outer part of Isfjorden, Spitsbergen: revisiting Per Svendsen’s sites 50 years later. Polar Res. doi: 10.3402/polar.v31i0.17538 Google Scholar
  20. Hanna E, Jonsson T, Olafsson J, Valdimarsson H (2006) Icelandic coastal sea surface temperature records constructed: putting the pulse on air-sea-climate interactions in the northern North Atlantic. Part I: Comparison with HadISST1 open-ocean surface temperatures and preliminary analysis of long-term patterns and anomalies of SSTs around Iceland. J Clim 19:5652–5666CrossRefGoogle Scholar
  21. Hansen L (1999) The intertidal macrofauna and macroalgae at five Arctic localities (Disko, West Greenland). In: Brandt A, Thomsen HA, Heide-Jørgensen MP, Kristensen RM, Ruhberg H (eds) The 1998 Daish-German excursion to Disko Islands. Alfred Wegener Institut für Polar und Meeresforschung, Bremerhaven, West Greenland, pp 92–109Google Scholar
  22. Harley CDG (2011) Climate change, keystone predation, and biodiversity loss. Science 334:1124–1127PubMedCrossRefGoogle Scholar
  23. Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N, Herbert RJH, Jenkins SR, Thompson RC, Genner MJ, Southward AJ (2008) Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Clim Res 37:123–133CrossRefGoogle Scholar
  24. Hawkins SJ, Sugden HE, Mieszkowska N, Moore PJ, Poloczanska E, Leaper R, Herbert RJH, Genner MJ, Moschella PS, Thompson RC, Jenkins SR, Southward AJ, Burrows MT (2009) Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores. Mar Ecol Prog Ser 396:245–259CrossRefGoogle Scholar
  25. Hayward PJ, Ryland JS (1995) Handbook of the Marine Fauna of North-West Europe. Oxford University Press, OxfordGoogle Scholar
  26. Herbert RJH, Southward AJ, Sheader M, Hawkins SJ (2007) Influence of recruitment and temperature on distribution of intertidal barnacles in the English Channel. J Mar Biol Assoc UK 87:487–499CrossRefGoogle Scholar
  27. Ingolfsson A, Hawkins SJ (2008) Slow recovery from disturbance: a 20 year study of Ascophyllum canopy clearances. J Mar Biol Assoc UK 88:689–691CrossRefGoogle Scholar
  28. Jenkins SR, Moore P, Burrows MT, Garbary DJ, Hawkins SJ, Ingolfsson A, Sebens KP, Snelgrove PVR, Wethey DS, Woodin SA (2008) Comparative ecology of north Atlantic shores: do differences in players matter for process? Ecology 89:3–23CrossRefGoogle Scholar
  29. Jensen A (1949) Concerning a change of climate during recent decades in the Arctic and Subarctic regions, from Greenland in the west to Eurasia in the east, and contemporary biological and geophysical changes. Book 14 (8). Det Kgl. Danske Videnskabernes Selskab, CopenhagenGoogle Scholar
  30. Johannesson K, Ekendahl A (2002) Selective predation favouring cryptic individuals of marine snails (Littorina). Biol J Linn Soc 76:137–144CrossRefGoogle Scholar
  31. Jones SJ, Mieszkowska N, Wethey DS (2009) Linking thermal tolerances and biogeography: mytilus edulis (L.) at its southern limit on the east coast of the United States. Biol Bull 217:73–85PubMedGoogle Scholar
  32. Jones SJ, Lima FP, Wethey DS (2010) Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J Biogeogr 37:2243–2259CrossRefGoogle Scholar
  33. Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3:1356–1373PubMedCrossRefPubMedCentralGoogle Scholar
  34. Juul-Pedersen T, Arendt EK, Mortensen J, Rysgaard S, Søgaard HD, Retzel A, Nygaard R, Burmeister AD, Sejr MK, Blicher ME, Krause-Jensen D, Marna N, Merzouk A, Labansen AL, Geertz-Hansen O, Boye T, Simon M (2013) Nuuk Basic, the marine basic programe 2010. In: Jensen LM, Rasch M (eds) Nuuk ecological research operations, 6th annual report, 2012. Aarhus University, DCE, Aarhus, pp 47–67Google Scholar
  35. Karez R, Chapman ARO (1998) A competitive hierarchy model integrating roles of physiological competence and competitive ability does not provide a mechanistic explanation for the zonation of three intertidal Fucus species in Europe. Oikos 81:471–494CrossRefGoogle Scholar
  36. Keddy PA (1982) Quantifying within-lake gradients of wave energy—interrelationships of wave energy, substrate particle-size and shoreline plants in Axe Lake, Ontario. Aquat Bot 14:41–58CrossRefGoogle Scholar
  37. Konar B, Iken K, Edwards M (2009) Depth-stratified community zonation patterns on Gulf of Alaska rocky shores. Mar Ecol Evol Persp 30:63–73CrossRefGoogle Scholar
  38. Kordas RL, Harley CDG, O’Connor MI (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400:218–226CrossRefGoogle Scholar
  39. Leonard GH (2000) Latitudinal variation in species interactions: a test in the New England rocky intertidal zone. Ecology 81:1015–1030CrossRefGoogle Scholar
  40. Little CG, Williams GA, Trowbridge CD (2009) The biology of rocky shores. Oxford University Press Inc., OxfordGoogle Scholar
  41. Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. Lüning K (1990) Seaweeds. Their environment, biogeography, and ecophysiology. Wiley, New YorkGoogle Scholar
  43. Menge BA (1976) Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol Monogr 46:355–393CrossRefGoogle Scholar
  44. Mieszkowska N, Kendall MA, Hawkins SJ, Leaper R, Williamson P, Hardman-Mountford NJ, Southward AJ (2006) Changes in the range of some common rocky shore species in Britain—a response to climate change? Hydrobiologia 555:241–251CrossRefGoogle Scholar
  45. Mieszkowska N, Hawkins SJ, Burrows MT, Kendall MA (2007) Long-term changes in the geographic distribution and population structures of Osilinus lineatus (Gastropoda : Trochidae) in Britain and Ireland. J Mar Biol Assoc UK 87:537–545CrossRefGoogle Scholar
  46. Moore GWK, Pickart RS, Renfrew IA (2008) Buoy observations from the windiest location in the world ocean. Geophys Res Lett, Cape Farewell. doi: 10.1029/2008GL034845 Google Scholar
  47. Müller R, Laepple T, Barsch I, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638CrossRefGoogle Scholar
  48. Oksanen J, Guillaume BF, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: Community ecology package. R package version 2.0-7. Accessed 18 Mar 2013
  49. Olsen JL, Zechman FW, Hoarau G, Coyer JA, Stam WT, Valero M, Aberg P (2010) The phylogeographic architecture of the fucoid seaweed Ascophyllum nodosum: an intertidal ‘marine tree’ and survivor of more than one glacial-interglacial cycle. J Biogeogr 37:842–856CrossRefGoogle Scholar
  50. Paine RT (1994) Marine rocky shores and community ecology: an experimentalist’s perspective. Ecology Institute, Oldendorf/LuheGoogle Scholar
  51. Pedersen PM (2011) Grønlands havalger. Epsilon, CopenhagenGoogle Scholar
  52. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Accessed 18 Mar 2013
  53. Ribergaard MH (2013) Oceanographic investigations off west Greenland 2012. NAFO Scientific Council Documents, CopenhagenGoogle Scholar
  54. Rosenvinge LKR (1893) Grønlands havalger. Meddel Grønland 3:765–981Google Scholar
  55. Rueness J (1977) Norsk Algeflora. Universitetsforlaget, OsloGoogle Scholar
  56. Sagarin RD, Barry JP, Gilman SE, Baxter CH (1999) Climate-related change in an intertidal community over short and long time scales. Ecol Monogr 69:465–490CrossRefGoogle Scholar
  57. Schonbeck MW, Norton TA (1980) Factors controlling the lower limits of fucoid algae on the shore. J Exp Mar Biol Ecol 43:131–150CrossRefGoogle Scholar
  58. Scrosati R, Eckersley LK (2007) Thermal insulation of the intertidal zone by the ice foot. J Sea Res 58:331–334CrossRefGoogle Scholar
  59. Scrosati R, Heaven C (2007) Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in eastern Canada. Mar Ecol Prog Series 342:1–14CrossRefGoogle Scholar
  60. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis. Working Group I, contribution to the fourth assessment report of the IPCC Intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  61. Svendsen P (1959) The algal vegetation of Spitsbergen. Norsk polarinst skr 116:1–51Google Scholar
  62. Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol. doi: 10.1046/j.1365-2656.2003.00748.x Google Scholar
  63. Vesteegh EAA, Blicher ME, Mortensen J, Rysgaard S, Als TD, Wanamaker AD (2012) Oxygen isotope ratios in the shell of Mytilus edulis: archives of glacier meltwater in Greenland? Biogeosciences 9:5231–5241CrossRefGoogle Scholar
  64. Węsławski JM, Wiktor J Jr, Zajaczkowski M, Futsaeter G, Moe KA (1997) Vulnerability assessment of Svalbard intertidal zone for oil spills. Estuar Coast Shelf Sci 44:33–41CrossRefGoogle Scholar
  65. Węsławski JM, Wiktor J Jr, Kotwicki L (2010) Increase in biodiversity in the Arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Mar Biodiv 40:123–130CrossRefGoogle Scholar
  66. Węsławski JM, Kendall MA, Włodarska-Kowalczuk M, Iken K, Kędra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85CrossRefGoogle Scholar
  67. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20Google Scholar
  68. Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro-and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507CrossRefGoogle Scholar
  69. Zacherl D, Gaines SD, Lonhart SI (2003) The limits to biogeographical distributions: insights from the northward range extension of the marine snail, Kelletia kelletii (Forbes, 1852). J Biogeogr 30:913–924CrossRefGoogle Scholar
  70. Zippay ML, Helmuth B (2012) Effects of temperature change on mussel, Mytilus. Integr Zool 7:312–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Signe Høgslund
    • 1
    Email author
  • Mikael K. Sejr
    • 1
    • 3
  • Jozef WiktorJr.
    • 2
  • Martin E. Blicher
    • 3
  • Susse Wegeberg
    • 1
  1. 1.Department of Bioscience, Arctic Research CentreAarhus UniversityAarhus CDenmark
  2. 2.Institute of OceanologyPolish Academy of SciencesSopotPoland
  3. 3.Greenland Climate Research CentreGreenland Institute of Natural ResourcesNuukGreenland

Personalised recommendations