Advertisement

Polar Biology

, Volume 37, Issue 10, pp 1479–1494 | Cite as

Description of Pyramimonas diskoicola sp. nov. and the importance of the flagellate Pyramimonas (Prasinophyceae) in Greenland sea ice during the winter–spring transition

  • Sara Harðardóttir
  • Nina Lundholm
  • Øjvind Moestrup
  • Torkel Gissel Nielsen
Original Paper

Abstract

Pyramimonas Schmarda is a genus of unicellular green flagellates, recorded in marine water and sea ice samples. Pyramimonas is within the prey size range of the most important protozoan grazers in Disko Bay, West Greenland, where this study took place. Despite the potential ecological importance, little is known about the occurrence of the genus. The aim of this study was to explore the biomass of Pyramimonas in developing stages of sea ice and in the water column. Pyramimonas colonized the early stages of sea ice, and the highest percent of Pyramimonas biomass was found in grease ice. The biomass of Pyramimonas was more than a magnitude higher within sea ice compared to the surface water. The results illustrate that Pyramimonas from the ice is an important contributor to the plankton community prior to the spring bloom. An undescribed species, Pyramimonas diskoicola sp. nov., was found. Based on morphology and ultrastructure, combined with molecular phylogeny inferred from the small-subunit SSU rDNA and the large-subunit chloroplast-encoded rbcL, the species was placed in subgenus Vestigifera. The cells possessed four flagella, measured 8.3 ± 2.6 μm in length and 5.1 ± 0.8 μm in width, and were characterized by an uplifted quadrant in the center of the box scales, not seen at any other Pyramimonas species. The phylogenetic analyses indicated P. diskoicola to be closely related to other polar sea ice species of Pyramimonas.

Keywords

Pyramimonas diskoicola sp. nov. Vestigifera Ultrastructure Phylogeny rbcL SSU rDNA Succession Sea ice 

Notes

Acknowledgments

We thank the Arctic Station and the scientific leader Outi Tervo for providing excellent research facilities and assistance, Abel Brand, the crew of R/V Porsild, Magnus Bohr, and Vera Kristbjargardottir for help with field work. For assistance in the laboratory, we thank Charlotte Hansen for help with the sequencing, Birgit Søborg for technical assistance at Arctic Station, Eva Friis Møller for measuring the nutrients, and Lis Munk Frederiksen for thin sectioning of the cells for EM. The reviewers Johanna Ikavälko and Helge A. Thomsen and an anonymous reviewer contributed prominently to this article. This project was financed by the Carlsberg Foundation as part of the project “Spring in Disko” to Torkel Gissel Nielsen, a FREJA stipend to Nina Lundholm, and A.P Møller og Hustru Chastine Mc-Kinney Møllers Fond til Almene Formaal to Sara Harðardóttir.

Supplementary material

300_2014_1538_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefPubMedCentralGoogle Scholar
  2. Arrigo KR, Mock T, Lizotte MP (2010) Primary producers and sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Blackwell Science, Oxford, pp 283–325Google Scholar
  3. Bell EM, Laybourn-Parry J (2003) Mixotrophy in the antarctic phytoflagellate Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J Phycol 39:644–649CrossRefGoogle Scholar
  4. Braarud T (1935) The “Øst” expedition to the Denmark strait 1929 II. Hvalrådets Skrifter 10:1–173Google Scholar
  5. Cox GFN, Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29:306–316Google Scholar
  6. Daugbjerg N (2000) Pyramimonas tychotreta, sp. nov. (Prasinophyceae), a new marine species from Antarctica: light and electron microscopy of the motile stage and notes on growth rates. J Phycol 36:160–171CrossRefGoogle Scholar
  7. Daugbjerg N, Moestrup Ø (1992) Fine structure of Pyramimonas cyclotreta sp. nov. (Prasinophyceae) from Northern Foxe Basin, Arctic Canada, with some observations on growth rates. Eur J Protistol 28:288–298PubMedCrossRefGoogle Scholar
  8. Daugbjerg N, Moestrup Ø (1993) Four new species of Pyramimonas (Prasinophyceae) from arctic Canada including a light and electron microscopic description of Pyamimonas quadrifolia sp. nov. Eur J Phycol 28:3–16CrossRefGoogle Scholar
  9. Garrison DL, Ackley SF, Buck KR (1983) A physical mechanism for establishing algal populations in frazil ice. Nature 306:363–365CrossRefGoogle Scholar
  10. Gradinger R (1996) Occurrence of an algal bloom under arctic pack ice. Mar Ecol Prog Ser 131:301–305CrossRefGoogle Scholar
  11. Gradinger R, Ikävalko J (1998) Organism incorporation into newly forming arctic sea ice in the Greenland Sea. J Plankton Res 20:871–886CrossRefGoogle Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for window 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Hansen HP, Koroleff K (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, 3rd edn. Whiley VCH, Weinheim, pp 159–228Google Scholar
  14. Hansen MO, Nielsen TG, Stedmon C, Munk P (2012) Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. Limnol Oceanogr 57:634–644CrossRefGoogle Scholar
  15. Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  16. Hori T, Moestrup Ø, Hoffman LR (1995) Fine structural studies on an ultraplanktonic species of Pyramimonas, P. virginica (Prasinophyceae), with a discussion of subgenera within the genus Pyramimonas. Eur J Phycol 30:219–234CrossRefGoogle Scholar
  17. Huggett J, Griffiths CL (1986) Some relationships between elevation, physicochemical variables and biota of intertidal rock pools. Mar Ecol Prog Ser 29:189–197CrossRefGoogle Scholar
  18. Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Arch Hydrobiol 109:445–454Google Scholar
  19. Kraus D (2014) Daniel’s XL Toolbox addin for Excel, version 6.10. http://xltoolbox.sourceforge.net. Accessed 30 May 2014
  20. Larsen NH, Moestrup Ø, Pedersen PM (1994) TL medium: Scandinavian Culture Centre for Algae and Protozoa, Catalogue. Botanical Institute, University of CopenhagenGoogle Scholar
  21. Levinsen H, Nielsen TG, Hansen BW (2000a) Annual succession of marine pelagic protozoans in Disko Bay, West Greenland, with emphasis on winter dynamics. Mar Ecol Prog Ser 206:119–134CrossRefGoogle Scholar
  22. Levinsen H, Turner JT, Nielsen TG, Hansen BW (2000b) On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar Ecol Prog Ser 204:65–77CrossRefGoogle Scholar
  23. Lundholm N, Daugbjerg N, Moestrup Ø (2002) Phylogeny of the Bacillariaceae with emphasis on the genus Pseudo-nitzschia (Bacillariophyceae) based on partial LSU rDNA. Eur J Phycol 37:115–134CrossRefGoogle Scholar
  24. Marin B, Melkonian M (1994) Flagellar hairs in prasinophytes (Chlorophyta): ultrastructure and distribution on the flagellar surface. J Phycol 30:659–678CrossRefGoogle Scholar
  25. McFadden GI, Moestrup Ø, Wetherbee R (1982) Pyramimonas gelidicola sp. nov. (Prasinophyceae) a new species isolated from antarctic sea ice. Phycologia 21:103–111CrossRefGoogle Scholar
  26. McFadden GI, Hill DRA, Wetherbee R (1986) A study of the genus Pyramimonas (Prasinophyceae) from southeastern Australia. Nord J Bot 6:209–234CrossRefGoogle Scholar
  27. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579CrossRefGoogle Scholar
  28. Michel C, Legendre L, Therriault JC, Demers S, Vandevelde T (1993) Springtime coupling between ice algal and phytoplankton assemblages in southeastern Hudson Bay, Canadian Arctic. Polar Biol 13:441–449CrossRefGoogle Scholar
  29. Mikkelsen DM, Rysgaard S, Glud RN (2008) Microalgal composition and primary production in arctic sea ice: a seasonal study from Kobbefjord (Kangerluarsunnguaq), West Greenland. Mar Ecol Prog Ser 368:65–74CrossRefGoogle Scholar
  30. Moestrup Ø (2002) Phylum Prasinophyta. In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge, pp 281–286Google Scholar
  31. Moestrup Ø, Hill DRA (1991) Studies on the genus Pyramimonas (Prasinophyceae) from Australian and European waters: P. propulsa sp. nov. and P. mitra sp. nov. Phycologia 30:534–546CrossRefGoogle Scholar
  32. Moestrup Ø, Thomsen HA (1974) An ultrastructural study of the flagellate Pyramimonas orientalis with particular emphasis on Golgi apparatus activity and the flagellar apparatus. Protoplasma 81:247–269CrossRefGoogle Scholar
  33. Moestrup Ø, Thomsen HA (1980) Preparation of shadowcast whole mounts. In: Stein-Taylor JR, Gantt E (eds) Handbook of phycological methods: developmental and cytological methods. Cambridge University Press, Cambridge, pp 385–390Google Scholar
  34. Moro I, La Rocca N, Valle DL, Moschin E, Negrisolo E, Andreoli C (2002) Pyramimonas australis sp. nov. (Prasinophyceae, Chlorophyta) from Antarctica: fine structure and molecular phylogeny. Eur J Phycol 37:103–114CrossRefGoogle Scholar
  35. Norris RE, Pienaar RN (1978) Comparative fine structural studies on 5 marine species of Pyramimonas (Chlorophyta, Prasinophyceae). Phycologia 17:41–51CrossRefGoogle Scholar
  36. Olrik K (1991) Planteplankton metoder. Miljøprojekt nr 187. Miljøministeriet, CopenhagenGoogle Scholar
  37. Petrich C, Eicken H (2010) Growth, structure and properties of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Blackwell Science, Oxford, pp 23–77Google Scholar
  38. Posada D, Crandall KA (1998) Model test: testing the modeling of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  39. Riedel A, Michel C, Gosselin M, Leblanc B (2007) Enrichment of nutrients, exopolymeric substances and microorganisms in newly formed sea ice on the Mackenzie shelf. Mar Ecol Prog Ser 342:55–67CrossRefGoogle Scholar
  40. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  41. Różańska M, Poulin M, Gosselin M (2008) Protist entrapment in newly formed sea ice in the coastal Arctic Ocean. J Mar Syst 74:887–901CrossRefGoogle Scholar
  42. Sazhin A (2004) Phototrophic and heterotrophic nano- and microorganisms of sea ice and sub-ice water in Guba Chupa (Chupa Inlet), White Sea, in April 2002. Polar Res 23:11–18CrossRefGoogle Scholar
  43. Schmarda LK (1850) Neue Formen von Infusorien. Denkschrifte der Kaiserlichen Akademie der Wissenschaften, Wien. Mathematisch Naturwissenschaftliche Klasse 1(2):9–14Google Scholar
  44. Strathmann RR (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma. Limnol Oceanogr 12:411–418CrossRefGoogle Scholar
  45. Suda S (2004) Taxonomic characterization of Pyramimonas aurea sp. nov. (Prasinophyceae, Chlorophyta). Phycologia 43:682–692CrossRefGoogle Scholar
  46. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0 Sinauer Associates, Sunderland Massachusetts, USAGoogle Scholar
  47. Sym SD (1992) A survey of the genus Pyramimonas Schmarda (Prasinophyceae) from Southern African inshore waters. Dissertation, University of the WitwatersrandGoogle Scholar
  48. Sym SD, Pienaar RN (1995) Taxonomy of Pyramimonas obovata and other observations on the subgenus Vestigifera of Pyramimonas (Prasinophyceae, Chlorophyta). Phycol Res 43:17–32CrossRefGoogle Scholar
  49. Tamelander T, Reigstad M, Hop H, Ratkova T (2009) Ice algal assemblages and vertical export of organic matter from sea ice in the Barents Sea and Nansen Basin (Arctic Ocean). Polar Biol 32:1261–1273CrossRefGoogle Scholar
  50. Thomas DN, Papadimitriou S, Michel C (2010) Biochemistry of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Blackwell Science, Oxford, pp 425–455Google Scholar
  51. Thomsen HA (1982) Planktonic choanoflagellates from Disko Bugt, West Greenland, with a survey of the marine nanoplankton of the area. Meddelelser om Grønland. Bioscience 8:3–36Google Scholar
  52. Thomsen HA (1988) Fine structure of Pyramimonas nansenii (Prasinophyceae) from Danish coastal waters. Nord J Bot 8:305–318CrossRefGoogle Scholar
  53. Throndsen J (1970) Flagellates from arctic waters. Nytt Magasin for Botanikk, Oslo 17:49–57Google Scholar
  54. Varela M, Fernandez E, Serret P (2002) Size fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep Sea Res Part 2(49):749–768CrossRefGoogle Scholar
  55. Werner I, Ikävalko J, Schünemann H (2007) Sea-ice algae in arctic pack ice during late winter. Polar Biol 30:1493–1504CrossRefGoogle Scholar
  56. World Meteorological Organization (1970) WMO sea ice nomenclature. WMO no. 259. http://wmo.multicorpora.net/MultiTransWeb/Web.mvc. Accessed 22 May 2014
  57. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res 10:221–231Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sara Harðardóttir
    • 1
  • Nina Lundholm
    • 1
  • Øjvind Moestrup
    • 2
  • Torkel Gissel Nielsen
    • 3
  1. 1.Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
  2. 2.Marine Biological Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  3. 3.Section for Oceanography and Climate, National Institute of Aquatic ResourcesTechnical University of DenmarkCharlottenlundDenmark

Personalised recommendations